
DB/C Utilities 101
Guide and Reference

January 2023

Copyright Portable Software Company 2023

Table of Contents 
 

Runtime Properties 9
DB/C Utilities 11

aimdex 12
build 14
chain 16
copy 27
create 28
delete 29
dump 30
edit 31
encode 39
exist 40
filechk 41
index 42
library 44
list 46
reformat 48
rename 52
sort 53
tdcmp 56

Runtime Properties

The DB/C DX runtime properties file contains configuration and runtime information for execution of
DB/C Utilities as well as for DB/C DX programs. The properties file is a native text file that contains key
word value pairs in each line of the file. Properties files use the backslash character (\) as an escape
character. Thus when you need to include one backslash in a value, specify two consecutive backslashes.
This search for the runtime properties file is done in the following order:
1. -cfg=filename option specified on the command line. 
2. DBC_CFG=filename defined in the operating system environment. 
3. the file named dbcdx.cfg located in the current directory.
These elements are used in the following descriptions:
string is a string of characters and digits. It may contain blanks.
number is a string of one or more digits.
directory [; directory …] is one or more directories separated by a semicolon.
translate-spec is either nnn:nnn or nnn-nnn:nnn where nnn is the decimal value of a character. The value

before the colon is the translate from character or the translate from character range, and the
character after the colon is the translate to character or the first character in the translate to
range.

The following keyword-value pairs of properties apply to the DB/C DX Utilities. Unless otherwise noted,
each keyword may only be specified once in the properties file.
dbcdx.memalloc = nnn 

This property specifies the number of kilobytes that will be allocated for utility. The default is
2048. This value should be increased if an out of memory error occurs.

dbcdx.file.casemap = translate-spec [; translate-spec …] 
This property specifies the file case translation table used to modify the default behavior for
case insensitive aim reads. This property may be needed to support international character
set as DB/C DX by default only converts a-z to A-Z for aim record comparisons. This would
be equivalent to having a translate value of 97-122 : 65.

dbcdx.file.collate = translate-spec [; translate-spec …] 
This property specifies the collating sequence table used to modify the default behavior of the
sort utility and index keys. This property may be needed to support international character
sets as DB/C DX by default sorts using the ASCII value of the character. This would be
equivalent to having a translate value of 0-255 : 0.

dbcdx.file.compat = dos 
dbcdx.file.compat = rms 
dbcdx.file.compat = rmsx

	 This property specifies the Datapoint DATABUS file statement compatibility. This property

causes the file name specified on the command line of utilities to be altered before the
operation occurs. If dos is specified, the first slash (/) in the file name is translated to a period.
If rms is specified, the first slash (/) in the file name is translated to a period. If the extension
is TEXT, it is translated to TXT. If the extension is ISAM, it is translated to ISI. In addition, if
the name portion of the file name (left of the slash) is longer than eight characters, it is
truncated to eight characters. If rmsx is specified, the same actions occur as for rms, except
name portion truncation does not occur.

dbcdx.file.editcfg = directory 
The source code editor utility (edit) stores configuration information in a file named edit.cfg
in the current directory. If this runtime property is specified, the directory location of this file
is designated by directory.

dbcdx.file.extcase = upper 
This property specifies how default extensions are appended to file names that do not contain

Page 9

an extension. If this property is specified, an uppercase extension is appended to the file
name. If this property is not specified, a lowercase extension is appended to the file name.

dbcdx.file.ichrs = on 
This property allows DB/C-type files to contain characters in the range 128 through 248.
Digit compression is disabled, but space compression still works. If this property is not
specified, then values 128 through 248 are considered to be digit compression characters.

dbcdx.file.namecase = upper 
dbcdx.file.namecase = lower

	 If the value is a upper, then all file names are translated to upper case. If the value is lower,

then all file names are translated to lower case.
dbcdx.file.open = directory [; directory …]

This property specifies the name of the local directories to search when opening a file. If the
value is a directory or a list of directories an attempt is made to locate that file in the directory
or directories in the order specified.

dbcdx.file.prep = directory 
This property specifies the local directory where a file is created.

dbcdx.file.vol.volume = directory [; directory …]

	 This property specifies the local directory or directories associated with the volume that is

specified. volume is case sensitive and must exactly match the volume specified on the open
and prepare statements. This property may be specified more than once, except volume can
not be duplicated.

Page 10

DB/C Utilities

The DB/C Utilities are run from the operating system command prompt and from chain files. The
Runtime Properties described in the previous chapter control the behavior of the utilities.
The syntax of the utilities and their parameters follows these rules:
1. All parameters are separated by blanks.
2. All parameters may be enclosed by or may contain a pair of double quotation marks (" "). The

pair of double quotation marks is ignored. This technique may be used to enclose a blank
character so that it will not be considered a delimiter between parameters. For example

	 	 index file1 1-3 -p2=" "

	 causes all records with blank characters in the second position to be selected, and
	 	 index file1 1-3 -p2=A

	 is exactly the same as
	 	 index file1 1-3 -p2="A"

3. A solitary double quotation mark that is not part of a pair is invalid unless it is immediately
preceded by the backslash character. For example

	 	 index file1 1-3 -p2="

	 will give an undefined result.
4. The back slash (\) character is the forcing character used when a parameter contains a double

quotation mark or a backslash. The backslash forcing character is ignored. For example
	 	 index file1 1-3 -p2=\\

	 causes all records with a back slash in the second position to be selected.
5. Each utility is discussed in a separate chapter in this manual. At the beginning of each chapter,

the command line syntax is presented. Certain parameters may be enclosed in brackets ([]).
The brackets indicate that the enclosed parameter is optional.

6. If the utility is run as a stand-alone executable, each utility allows the -cfg=filename command line
parameter. This parameter provides the name of the runtime properties file. The runtime
properties file contains information that controls various aspects of execution of each utility. If the
-cfg parameter is not specified, then the DBC_CFG environment variable provides the runtime
properties filename. If -cfg and DBC_CFG are not specified, then the default name for the
runtime properties file is dbcdx.cfg which is to be found in the current directory. If the utility is
run as an inline verb in the DB/C program, the -cfg command line parameter is not allowed.

Page 11

aimdex

The aimdex utility creates a special aimdex file from a text file. This special aimdex file is used by the  
DB/C DX runtime for AFILE type files. The format of the aimdex command line is:
aimdex file1 [file2] key-spec [key-spec...] [-a=n] [-cfg=filename] [-d] [-e] [-f[=n]] [-j[r]] [-m=c] [-n=[+]n]

[-o=filename] [or] [-pn[-n]eqc[c...]] [-pn[-n]nec[c...]]] [-pn[-n]gtc[c...]]] [-pn[-n]gec[c...]]]
[-pn[-n]ltc[c...]]] [-pn[-n]lec[c...]] [-r] [-s] [-t] [-x[=n]] [-y] [-z=n]

file1 is the name of the input file. If no extension is specified, .txt is assumed. This file can be any
text type file. The search path for the input file is controlled with the dbcdx.file.open runtime
property.

file2 is the name of the output aimdex file. If file2 is not specified, file1 with an extension of .aim is
assumed. If file2 is specified without an extension, .aim is assumed. The search and create
path for the output file is controlled with the dbcdx.file.open and dbcdx.file.prep runtime
properties.

key-spec is a key specification. Valid key specifications are of the forms nnn, nnn-nnn, nnnx, or nnn-
nnnx. nnn is the character position and nnn-nnn is the range of character positions from each
input file text record that is used as a key. nnn is a number between 1 and 65520. The trailing
letter x may be either upper or lower-case. The x signifies that the key information for this
field is excluded from the AIM file, but the search criteria on read are still valid. Use of this
parameter may improve read performance in certain cases and it may worsen read
performance in other cases. Use of this parameter usually improves write performance.

-a=n is the memory allocation parameter where n is a one to three-digit number. n multiplied by
1024 is the number of bytes of memory that is allocated for the internal work area. This
parameter affects only the performance of the aimdex command.

-cfg=filename is the runtime property file.
-d	 is the distinct key flag. If this parameter is specified, lower-case characters are distinct from

upper-case characters. If this parameter is not specified, no case distinction is made.
-e	 is the existing command line parameters option. When this option is specified, the aimdex

command utilizes the command line parameters that are stored in the existing aim file. If the
existing aim file was created using the prep statement rather than the aimdex command, the
command line parameters will not be present in the file and the -e option cannot be used. -e
is mutually exclusive with all other command line parameters.

-f[=n] is the fixed length record parameter. This parameter can only be specified if the records in the
file are not compressed and are all the same length. The actual record size (n) only needs to be
specified if the input file is initially empty. n is a number between 1 and 65500. If this
parameter is not specified, variable length and compressed records may be used. Read
performance is usually improved if this parameter is specified. Write performance is not
affected by this parameter.

-j[r] is the share open mode parameter. The -j parameter causes the input file to be opened in
share read/write mode. The -jr parameter causes the input file to be opened in share read-
only mode.

-m=c is the match character parameter. c is the match character that is compared to all characters
where it is specified in the read key pattern. If not specified, the match character defaults to ?.

-n=[+]n is the primary extent number of records parameter. n is a one to seven-digit number. This
parameter specifies the amount of space to be allocated in the primary key area of the aim
file. If the typical maximum number of records in the text file is known, this parameter
should be specified. Both read and write access perform better if the aim file does not grow
into secondary extents. If the optional + is specified, then the amount of space reserved in the
primary key area of the AIM file is the sum of the amount of space required for the number of
records currently in the input file plus the amount of space required for n additional records.

Page 12

-o=filename is the options file parameter. filename is the name of a user-created file containing options. It is
useful when the number of options is too large to fit on one command line.

or	 is the logical or parameter. If the or parameter is placed between two -p parameters, they are
logically OR-ed together instead of logically AND-ed together. The precedence of all -p
operations is from left to right.

-pn[-n]eqc[c...]
-pn[-n]nec[c...]
-pn[-n]gtc[c...]

-pn[-n]gec[c...]
-pn[-n]ltc[c...]
-pn[-n]lec[c...] are the record select range parameters. n may be a one to four digit decimal number. c is

the match character. The key of a record is included in the aimdex if the record contains a
character that is equal, not equal, greater than, greater than or equal, less than, or less than or
equal to (respectively) the match character at character position n. Otherwise, the record is
ignored. = may be used instead of eq. # may be used instead of ne. The optional n-n is used
to specify a range of character positions. If a range is specified, the number of match
characters specified should be the same as the number of positions in the range. If the
number of match characters specified is less than the number of positions in the range, it is
assumed that the unspecified match characters are blanks. If the number of match characters
specified is greater than the number of positions in the range, the extra match characters are
truncated. If more than one -p parameter is specified, they are logically AND-ed together. For
example: 

-p5eqxy
causes the records with a match character at the fifth character position equal to x or equal to
y to be selected. If this parameter is specified, the -f parameter must also be specified.

-r	 is the rename file parameter. This parameter causes the name of the text file stored in the AIM
file to be changed to the specified input text file name. This parameter is mutually exclusive
with all other parameters. Both the input text file and the output aim file must be specified.

-s	 is the space reclamation parameter. This parameter is only applicable if the -f parameter is
also specified. If the -s parameter is specified, records written to the file reuse the space made
available by deleted records whenever possible.

-t	 is the limited text file search parameter. If this parameter is specified, the open statement will
only look for the text file in the same directory in which the index file is found.

-x[=n] without =n is the reverse selection parameter. This parameter causes those records that are
selected by the -p parameter to be excluded from the output file and those records not
selected to be written into the output file. -x with =n specified is the secondary extent number
of records parameter. n is a one to seven-digit number. This parameter specifies the amount
of space that is allocated when the primary key area is full. If not specified, each secondary
extent contains space for 25% of the number of records in the primary area.

-y	 is the test end of file parameter. This parameter causes aimdex to fail if an end of file
character is encountered other than at the physical end of file.

-z=n is the speed parameter. If not specified, the default Z value is 199. Valid Z values are from 40
to 2000. As the Z value increases, read performance improves. However, the size of the aim
file also increases linearly with the Z value. Write performance typically improves as the Z
value decreases.

The aim search can be case sensitive or case insensitive, depending if the dbcdx.file.casemap runtime
property is specified.
The aimdex utility returns a return code of zero if aimdex completes successfully. The return code is non-
zero if aimdex does not complete successfully. If the return code is non-zero and aimdex is running under
chain execution, chain execution is aborted.

Page 13

build

The build utility places one or more records selected from an input file into an output file. The format of
the build command line is:
build file1 file2 [rec-spec...] [-a] [-c] [-cfg=filename] [-j[r]] [-n=filename] [-o=filename] [or] 

[-pn[-n]eqc[c...]] [-pn[-n]nec[c...]]] [-pn[-n]gtc[c...]]] [-pn[-n]gec[c...]]] [-pn[-n]ltc[c...]]]
[-pn[-n]lec[c...]] [-s=filename] [-t[=type]] [-x] [-y]

file1 is the name of the input file. If no extension is specified, then .txt is assumed. This file can be
any text type file. The name of the input file and the name of the output file must be different.
The search path for the input file is controlled with the dbcdx.file.open runtime property.

file2 is the name of the output file. If no extension is specified then .txt is assumed. The name of
the input file and the output file must be different. The search and create path for the output
file is controlled with the dbcdx.file.open and dbcdx.file.prep runtime properties.

rec-spec is a record specification. Valid record specifications are of the form nnn or nnn-nnn, where
nnn is a record number to be included in the output and nnn-nnn is a range of records to be
included in the output. If a record specification is not designated, all records are included in
the output.

-a	 appends the records from the input file to the output file. This implies that the output file
must already exist. If the -a parameter is not specified, then the records are placed into the
output file as the first records, overwriting any records that already exist. If this parameter is
specified, then the output file type is not changed, and the -t parameter is ignored if it is
specified.

-c	 causes the output file to be in DB/C text compressed format. The -c and -t parameters are
mutually exclusive.

-cfg=filename is the runtime property file.
-j[r] is the share open mode parameter. The -j parameter causes the input file to be opened in

share read/write mode. The -jr parameter causes the input file to be opened in share read-
only mode.

-n=filename is the read translate table. filename contains the 256 byte translate table applied to each
record as it is read.

-o=filename is the options file parameter. filename is the name of a user-created file containing options. It is
useful when the number of options is too large to fit on one command line.

or	 is the logical or parameter. If the or parameter is placed between two -p parameters, they are
logically OR-ed together instead of logically AND-ed together. The precedence of all -p
operations is from left to right.

-pn[-n]eqc[c...]
-pn[-n]nec[c...]
-pn[-n]gtc[c...]

-pn[-n]gec[c...]
-pn[-n]ltc[c...]
-pn[-n]lec[c...] are the record select range parameters. n may be a one to four digit decimal number. c is

the match character. The key of a record is included in the aimdex if the record contains a
character that is equal, not equal, greater than, greater than or equal, less than, or less than or
equal to (respectively) the match character at character position n. Otherwise, the record is
ignored. = may be used instead of eq. # may be used instead of ne. The optional n-n is used
to specify a range of character positions. If a range is specified, the number of match
characters specified should be the same as the number of positions in the range. If the
number of match characters specified is less than the number of positions in the range, it is
assumed that the unspecified match characters are blanks. If the number of match characters
specified is greater than the number of positions in the range, the extra match characters are
truncated. If more than one -p parameter is specified, they are logically AND-ed together.

Page 14

-s=filename is the unselected records parameter. filename is the name of the file to write all records not
selected with the -p parameter. The file specified by filename is always created by build and
the -a parameter has no impact on the creation of this file.

-t[=type] is the output file type option. type can be data, crlf, text, or std. The default is to create DB/C
standard text file (type is std). Under Windows, text is the equivalent to crlf; otherwise, text is
the equivalent to data. If type is omitted, text is assumed.

-x	 is the reverse selection parameter. This parameter causes those records that are selected by
the -p parameter to be excluded from the output file and those records not selected to be
written into the output file.

-y	 is the test end of file parameter. This parameter causes build to fail if an end of file character
is encountered other than at the physical end of file.

The build utility returns a return code of zero if build completes successfully. The return code is non-zero
if build does not complete successfully. If the return code is non-zero and build is running under chain
execution, then chain execution is aborted.

Page 15

chain

The chain utility provides the ability to execute a series of commands without operator intervention. The
actual commands executed may be controlled by parameters specified at chain runtime. To run a series of
commands, a chain file is created which contains the commands and chain directives. This chain file is
then executed by running the chain command. The format of the chain command line is:
chain file [parameter] [-c] [-cfg=filename] [-d] [-i] [-j[r]] [-n] [-o=filename] [-p] [-s] [-t] 

[-w=filename]
file is the user-created chain file. If no extension is specified, .chn is assumed. This file can be any

text type file. A file name is required unless -n or -p is specified. The search path for the input
file is controlled with the dbcdx.file.open runtime property.

parameter is a chain variable. A chain variable must have a valid variable name. Each chain variable
specified as a parameter is set to the logical value true, character variable type, and string
value null. If the variable is followed by an equal sign and a string of characters, the string
value of the variable is set to the value of the string of characters following the equal sign.
One or more parameters may be specified.

-c	 causes the chain command to compile the chain file, but not to execute the resulting
commands.

-cfg=filename is the runtime property file.
-d	 causes the chain command to display each chain file input line after the replacement of

symbols.
-i	 is the case insensitive parameter. By default, chain variables are case sensitive. The -i

parameter causes them to be case insensitive.
-j[r] is the shared open mode parameter. The -j parameter causes the input file to be opened in

shared read/write mode. The -jr parameter causes the input file to be opened in shared read-
only mode.

-n is a restart parameter that causes chain execution to continue from a previously aborted chain
execution. The -n parameter causes execution to continue at the next command after the one
that was aborted.

-o=filename is the options file parameter. filename is the name of a user-created file containing options. It is
useful when the number of options is too large to fit on one command line.

-p	 is a restart parameter that causes chain execution to continue from a previously aborted chain
execution. The -p parameter causes execution to continue at the previously executing
command (the one that was aborted).

-s	 causes the chain execution phase to use the system command interpreter or shell to execute
the commands. After the execution of a command, the abort bit will be cleared. The return
status from the executed command will be ignored. The -s option enables the user to take
advantage of some of the features of the command interpreter such as input and output
redirection, batch or script file support, pipe support, and multi-tasking support. The use of
the -s option may cause the output of the executed commands to ignore the redirection of the
log directive. The systemoff directive cancels the effect of the -s option.

-t	 causes the debug directive to display the variables on the control statement. Otherwise, the
debug directive is ignored.

-w=filename is the work file parameter. If not specified, the default work file name is chain.wrk.
The chain utility returns a return code of zero if chain completes successfully. The return code is non-zero
if chain does not complete successfully (i.e., chain aborted).
Chain executes in two phases. The first phase is the compilation phase. The second phase is the execution
phase.

Page 16

The compilation phase creates the chain work file and writes an extent that contains command lines and
execution time directives.
The execution phase reads the work file and performs the commands and execution time directives.
When a command is executed during the execution phase, the command returns a status value. If that
value is non-zero, the execution is considered a failure and the abort bit of chain is set. If the return value
is zero, the execution is considered a success and the abort bit of chain is cleared. Immediately after the
command execution, the abort bit is tested. If the bit is set, chain execution is aborted and chain returns a
status value of one. The noabort directive alters the testing of the abort bit. The systemon directive and
the -s option force the abort bit to be cleared, even if the return value was non-zero (the command failed).
This feature is useful when executing non-DB/C commands, or when you want to ignore errors.
If chain itself is executed by the execution phase, chain is being executed recursively. In this case, the
compilation phase appends a secondary extent to the work file. chain execution then continues with the
first command in the new extent. When all commands in that extent have been executed, the extent is
removed and chain continues with the remainder of the primary or current extent. There is no limit on the
number of times chain may be called recursively. An aborted chain that was called recursively will abort
the original chain .

Replacement Characters
Chain input lines may contain variables that are replaced by a string of characters during the compilation
phase. The use of the pound (#) character directly before and after a variable name in a chain line causes
the pound signs and the variable name to be replaced by the string value associated with the variable
name. However, no replacement takes place if the logical value of the variable is false or if the logical
value is true and the string value is null. The effect is to remove the pound signs and the variable name
from the statement.
The use of the percent (%) character is similar to that of the pound sign except that the string value of the
variable must be numeric. That value is then converted to a string of octal digits before the replacement
takes place. The first digit of the octal string is always 0.
Nested replacements are supported.

Chain Statements and Chain Command Lines
All lines in the chain file are either chain statements or command lines. Lines that begin with //, /@, 
/&, /., /:, or /* are chain statements. Any chain line that is not a chain statement is considered to be a chain
command line.
A chain command line is written to the current extent of the chain work file and will be executed during
the execution phase of chain. chain command lines may be altered by the chain statements.
The chain statements are:
// directive is the chain compile time control statement. These lines must contain a directive and zero or

more directive operands. The chain directives are described later in this chapter.
/@ directive is the chain compiler "as is" control statement. It is the same as the // compile time control

statement, except no replacements are performed.
/& comment is the pure comment statement. Lines starting with /& will never be displayed and will have

no effect on compilation or execution.
/. comment is the compile time comment statement. Lines starting with /. will be displayed during the

chain compilation phase.
/: comment is the execution time comment statement. Lines starting with /: will be displayed during the

chain execution phase. NOTE: If the /: is immediately followed by B or C, a short beep will be
sounded. To include a comment that begins with the letter B or the letter C, place a space
immediately after the /: .

/* comment is the execution time pause comment statement. It is the same as the /: execution time
comment statement, except execution is halted until the enter key is pressed. NOTE: If the 

Page 17

/* is immediately followed by B or C, a long beep will be sounded. To include a comment that
begins with the letter B or the letter C, place a space immediately after the /* .

Chain Variables
Each chain variable contains three attributes. The attributes are:

logical value true or false 
string value a string of characters 
open file association true or false

Variable names may only contain alphanumeric characters. The first character must be alphabetic.
Variable names may be up to 12 characters in length. Variable names longer than 12 will be truncated to
12 characters by using the first 11 characters and the last character. Variable names greater than 12 should
be verified for uniqueness. Variable names are case sensitive unless the -i parameter is specified.
Variables are created in two ways. First, a variable may be created from the list of variable names in the
command line. Second, a variable may be created by being used in a chain directive. The following
directives can be used to create variables or to change the values of existing variables: //assign, 
//keyin, //open, //openread, //read, and //set.
The maximum length of the string value is 80 characters. The logical value may be true or false. If the
logical value is false, then the string value is considered null.
When a variable is associated with an open file by using the //open or //openread directives, the string
value is changed to the name of the file and the open file association is set to disallow modification of the
string value by //assign, //set, or //keyin.
There are several reserved variable names. In all cases, their string value is the null string. Their logical
values are:

Chain Literals
Chain literals are used with control statement directives. A literal may be used anywhere a variable may
be used, except as the object of an assignment with directives that create variables.
A literal is enclosed in double quotation marks (" "). To include a quotation mark (") character in a
character literal, use the pound (#) character as a forcing character. To include a pound character in a
character literal, use two pound characters in a row. A numeric literal does not need to be enclosed in
double quotation marks.

Chain Expressions
Chain expressions consist of variables, literals, and operators. chain supports the following operators:
arithmetic, logical, character string, and special functions. Expressions are evaluated from left to right and
no operator has precedence over another. Parentheses can be used around an operation or a group of
operations to force precedence in evaluation. Parentheses may be nested.

Chain Directives
Directives are reserved key words that control the operations of the chain command. The compile time
control statements require a chain directive.

Name Logical Value

FALSE or false 
No or no 
OFF or off 
TRUE or true 
YES or yes 
ON or or 
NULL or null

false 
false 
false 
true 
true 
true 
true

Page 18

There are two types of chain directives. There are compile time directives and execution time directives.
The compile time directives control the operations during the compilation phase of chain. The execute
time directives control the operations during the execution phase of chain.
Compile time directives are: abort, assign, beep, click, close, debug, discard, display, do, else, elseif,
end, if, include, keyin, open, openread, position, read, rewrite, set, sound, stop, until, wait, while,
write, and xif.
Execute time directives are: abortoff, aborton, abtif, errabort, errgoto, goto, keyboard, label, log, logoff,
noabort, soundr, stamp, systemoff, systemon, and terminate.
// abort 

The abort compiler directive ends compilation and stops any execution of chain commands
compiled so far. Any nested levels of chain are also aborted.

// abortoff 
The abortoff execution directive clears the chain abort bit.

// aborton 
The aborton execution directive sets the chain abort bit.

// abtif 
The abtif execution directive aborts chain execution if the chain abort bit is set.

// assign variable-name = operand 
variable-name is a variable 
operand is a variable, literal, or expression
The assign directive is a string manipulation compiler directive. It changes the value of an
existing variable or creates a new variable. If variable-name does not exist, it is created. The string
value of the variable-name is changed to the string value of operand. The logical value of
variable-name is set to true.

// beep 
The beep compiler directive sounds a beep during compilation.

// click 
The click compiler directive sounds a beep during compilation.

// close variable-name 
variable-name is a variable
The close compiler directive closes the file associated with the variable specified by variable-name.
If the variable is not associated with an open file, nothing happens.

// debug list 
list is a list of operands that are variables and expressions separated by blanks
The debug compiler directive helps the user debug the chain file. The value of the variables and
expressions specified by the operands will be displayed separated by a space. The debug
directive will be ignored unless the -t option was specified on the chain command line.

// discard variable-name 
variable-name is a variable
The discard compiler directive removes the variable specified by variable-name. If the variable is
associated with an open file, the file is closed before the variable is removed.

// display list 
list is a list of operands that are variables and literals separated by blanks
The display directive is a compiler directive that displays the items from the list. If the operand in
the list is a variable, its string value is displayed. If the operand in the list is a literal, its value is
displayed.

// do

Page 19

// until operand 
operand is a variable or expression
The do and until directives are compiler directives which conditionally control execution of
subsequent command lines and compilation of the subsequent chain directives.
If the logical value of the variable or expression following the until directive is false, compilation
continues at the line containing the do directive. If the logical value of the variable or expression
is true, compilation continues at the chain line following the line containing the until directive.
The chain lines between the line containing the do directive and the line containing the until
directive will be processed at least one time. The do directive and the matching until directive
must be contained within the same chain file.

// errabort 
The errabort execution directive causes chain to test the abort bit after a command line is
executed. If the abort bit is set, the chain is aborted. This is the default setting at the start of chain,
the start of a nested chain, and after an executed command sets the abort bit. This directive is
canceled by the noabort execution directive.

// errgoto label 
label is a label name
The errgoto execution directive causes execution to continue at the line after the specified label if
the abort bit is set.

// goto label 
label is a label name
The goto execution directive causes execution to continue at the line following the specified label.

// if directive-operand
// elseif directive-operand
// else
// xif 

directive-operand is a variable or expression
The if, elseif, else, and xif compiler directives conditionally control execution of subsequent
command lines and compilation of subsequent chain directives.
If the logical value of the variable or expression following an if directive is true, compilation
continues at the next chain line. If the logical value of the variable or expression is false, then any
elseif directives are evaluated. If the logical value of any of the elseif directives is true,
compilation continues at the next chain line. If the logical values of all the if and elseif directives
are false, compilation continues after the optional else directive if it exists, or after the required xif
if the else does not exist.

// include operand 
operand is a chain file
The include compiler directive causes chain compilation to continue with statements from
another chain file. The operand must be a valid chain file name. If no extension is specified, .chn is
assumed. Includes may be nested up to three levels deep.

// keyboard operand 
operand is a variable or literal
The keyboard interactive execution directive allows the user to display a variable or literal
specified by the operand. The user is prompted for a response. If the response is null (i.e., the
Enter key is pressed), execution continues. If a string of characters is entered, that string is treated
as a command line and is executed immediately.

// keyin list 
list is a list of variables and literals separated by blanks

Page 20

The keyin interactive compiler directive allows the user to input data from the keyboard and
display data on the screen. The use of a variable in the list causes that variable to be created or
modified. A maximum of 80 characters may be entered as the string value of the variable. The use
of a literal in the list causes the value of the literal to be displayed.

// label label 
label is the label name
The label directive is an execution directive. The directive operand following the label directive
defines a place in the chain file that can later be accessed by an errgoto or goto directive.

// log operand 
operand is a log file
The log execution directive causes the output from chain and the output from commands
executed from chain to be redirected to the file specified by the operand. Output will not be
displayed on the screen. If the file already exists, the output will be appended to the end of file.
The log directive may not be supported for all operating systems and the results are unknown if
chain is executed with the -s option or the systemon directive in effect.

// logoff 
The logoff execution directive cancels the log directive and causes chain and command output to
be directed to the screen.

// noabort 
The noabort execution directive cancels the errabort execution directive and prevents the chain
from aborting after an executed command line sets the abort bit. The abort bit will remain set
after an executed command line sets it. The noabort is canceled by the errabort execution
directive. The noabort is also canceled by an implicit errabort, which occurs immediately after an
executed command sets the abort bit or the start of a nested chain.

// open operand1 operand2 
operand1 is a file variable 
operand2 is the file to open
The open compiler directive opens the file specified by operand2 and assigns the information to
the variable specified by operand1. The file is opened in exclusive read/write mode. If the file
does not exist, the file is created. If the open fails, chain compilation is aborted with an error
message. If the variable specified by operand1 is already associated with an open file, then that file
is closed before the open is performed.

// openread operand1 operand2 
operand1 is a file variable 
operand2 is the file to open
The openread compiler directive is the same as the open directive, except the file is opened in
shared read-only mode.

// position operand1 operand2 
operand1 is a variable associated with an open file 
operand2 is a variable or literal
The position compiler directive sets the current position of the file specified by operand1 to the
position specified by operand2. An attempt to position beyond the end of file will result in a
warning message.

// read operand list 
operand is a variable associated with an open file 
list is a list of variables separated by blanks
The read compiler directive reads the record located at the current position of the file specified by
the operand. The characters in the record are moved into the variables in the list. Up to 80

Page 21

characters are moved into a single variable. If there are less than 80 characters of data, only that
number of characters will be moved to the variable.
For the first variable in the list, the logical value will be set to false if the end of file is read;
otherwise, the logical value will be set to true. If a record with length zero is read, the string value
will be set to null.
For the remaining variables in the list, if there was no data to move, then the logical value is set to
false. Otherwise, data is moved and the logical values are set to true. After the read, the current
position of the file is advanced to the next record.

// rewrite operand list 
operand is a file variable 
list is a list of variables and literals separated by blanks
The rewrite compiler directive writes a record in the file specified by the operand. The record is
written at the position of the last record accessed, unless modified by the position directive. The
data written is from the list of variables or literals. The length of the record at the current position
determines the maximum number of bytes written. After the write, the current position of the file
is set to the first byte of the next record.

// set variable-name = operand 
variable-name is a variable 
operand is a variable, literal, or expression
The set compiler directive is used to change the logical value of an existing variable or to create a
new variable. If the variable specified by variable-name does not exist, it is created. The logical
value of variable-name is changed to the logical value of operand. The string value of variable-name
is set to null.

// sound operand 
operand is an optional variable or literal
The sound compiler directive causes a beep to sound for the number of seconds specified by the
operand. The beep will last for a minimum of one second.

// soundr operand 
operand is an optional variable or literal
The soundr execution directive causes a beep to sound for the number of seconds specified by the
operand. The beep will last for a minimum of one second.

// stamp 
The stamp execution directive displays the current time and date.

// stop operand 
operand is an optional variable or literal
The stop compiler directive stops chain compilation immediately. The optional operand is a
command line that will be executed at the start of the execution phase.

// systemon 
Specifying the systemon execution directive is the same as specifying the -s option on the chain
command line. This will cause all the following commands to be executed with the system
command interpreter or shell. After a command is executed, the chain abort bit will be cleared.
The return status from the command execu ed will be ignored.
The systemon directive enables the user to take advantage of some of the features of the
command interpreter such as input and output redirection, batch or script file support, pipe
support, and multi-tasking support. The use of the systemon directive may cause the output from
the executed commands to ignore the redirection of the log directive. The systemoff directive
cancels the systemon directive.

// systemoff 
The systemoff execution directive cancels the effects of the systemon directive or the -s option on
the command line.

Page 22

// terminate 
The terminate execution directive terminates chain execution for the current chain extent. Other
extents will continue to execute.

// wait operand 
operand is an optional variable or literal
The wait compiler directive causes chain compilation to pause for the number of seconds
specified by the operand. wait will pause for a minimum of one second.

// while operand
// end 

operand is a variable or expression
The while and end compiler directives conditionally control execution of subsequent command
lines and compilation of subsequent chain directives.
If the logical value of the variable or expression following the while directive is true, compilation
continues at the next chain line and when the end directive is encountered, compilation continues
with the while directive. If the logical value of the variable or expression following the while
directive is false, compilation continues at the chain line following the line containing the end
directive.

// write operand list 
operand is a variable associated with an open file 
list is a list of variables and literals separated by blanks
The write compiler directive writes a record at the end of the file specified by the operand. The
data written is from the list of variables or literals. After the write, the current position of the file
is set to the end of the file.

Arithmetic Operators
The arithmetic operators are: addition, subtraction, multiplication, division, and modulus.

+	 addition 
-	 subtraction or negate 
*	 multiplication 
/ divide 
// modulus

An arithmetic operator is placed between two variables and/or literals except when the minus sign is
used to negate a single variable or literal. These operations are performed on decimal numeric values.
The following paragraphs describe the methods by which the numeric values are obtained.
If a variable in the operation has a logical value of false, then that variable assumes a numeric value of
zero.
If the variable in the operation has a logical value of true, then the string value is converted to a number
before the arithmetic operation occurs. If the string value is not a valid numeric string, its numeric value
is zero.
The result of an arithmetic operation is a string value that does not contain leading zeros or blanks. The
resulting logical value is true.

Logical Operators
These are the logical operators:

~	 unary not 
& and 
|	 or 
=	 equal 

Page 23

~=	 not equal 
<	 less than 
>	 greater than 
<=	 less than or equal 
>=	 greater than or equal

A logical operator is placed between two variables and/or literals except for unary not which operates on
a single variable or literal and is placed to the left of the variable or literal. The unary not, and, and or
operators are performed on the logical value of the variables. The other operators operate on the string
values of the variables.
If a variable in the operation has a logical value of false, then that variable assumes a string value of null
(" "). If the variable in the operation has a logical value of true, different string values can be assumed.
The result of a logical operation is a logical value of true or false and a string value of null.

Character String Operators
The character string operators are: concatenation, substring, substring control, string length, pattern
match, string scan, string scan unequal, and string replace.

\\	 concatenation 
^ substring 
:	 substring control 
.	 string length 
[pattern match 
[[string scan 
~[[string scan unequal 
\	 string replace

A character string operator is placed between two variables and/or literals except for the substring
operator which has the syntax described below. These operations are performed on character string
values. The character string operators use the same methods as the logical operators to obtain the string
values.
The concatenation operation creates a new string by appending one string to another. The format is:
varlit1 \\ varlit2 

varlit1 is the first string 
varlit2 is the second string

The result is a value that has the type of character. The logical value is true. The string value is the second
operand appended to the first, but this value may not exceed 80 characters.
The substring operation extracts the specified series of characters from an existing string. The formats are:
varlit ^ exp1
varlit ^ (exp1 : exp2) 

varlit is a variable or literal from which the characters are extracted 
exp1 is the start expression which can be a variable, literal, or arithmetic expression 
exp2 is the length expression which can be a variable, literal, or arithmetic expression

In the first format, the character in position exp1 of the string value associated with varlit is extracted. In
the second format, exp2 characters starting at position exp1 of the string value associated with varlit are
extracted. If the value of exp1 is negative, then the position is calculated from the end of the string. If exp1
is zero or the absolute value is greater than the length of the string, no characters are extracted. If exp2 is
negative, then the characters are extracted in reverse order. If exp2 is specified and the end or beginning of
string is reached before the all characters are extracted, then the string is considered circular and the
extraction continues at the opposite end.
The string value is the characters extracted, but this value may not exceed 80 characters. The logical value
result is true.
The string length operation determines the length of a string. The format is:

Page 24

.varlit 
varlit is a variable or literal

The result is a string value that is the length of the string value of varlit. The logical value result is true.
The pattern match operation finds the first occurrence of a substring within a string. The format is:
varlit1 [varlit2 

varlit1 is the string to be searched 
varlit2 is the search string

The string value of varlit2 may contain the character ?, which is considered the match character.
If the string value of varlit2 was not found in the string value of varlit1, the logical value result is false. If
the substring was found, the logical value is true and the resulting string value is the starting position
within varlit1 of the matched substring.
The scan operation finds the first occurrence of any characters in a string that are contained in a search
string. The format is:
varlit1 [[varlit2 

varlit1 is the string to be searched 
varlit2 is the search string

If the characters within the string value of varlit2 are not found in the string value of varlit1, the logical
value result is false. If any of the characters in string varlit2 are found in varlit1, the logical value is true
and the resulting string value is the position within varlit1 of the first character that matched.
The scan unequal operation finds the first occurrence of any characters in a string that are not contained
in a search string. The format is:
varlit1 ~[[varlit2 

varlit1 is the variable to be searched 
varlit2 is the search string

If the characters within the string value of varlit2 are found in every position of the string varlit1, the
logical value result is false. If the characters in the string value of varlit2 are not found in varlit1, the
logical value is true and the resulting string value is the position within varlit1 of the first character that
could not be matched.
The string replace operation creates a new string value by replacing selected characters within a string
with other characters. The format is:
varlit1 \\ varlit2 

varlit1 is the string where the replacement takes place 
varlit2 is the replacement string

The string value of varlit2 contains pairs of characters. The first character of a pair is the character to
replace. The second character is the character that will replace the first. If the length of the string value
varlit2 is not an even number, then no replacement will take place.
The logical value result is true. The resulting string value is the varlit1 string value after replacement has
occurred.

Special Function Operators
The function operators are: ffile, getpos, getlastpos, and clock. The function operators operate on a single
variable except for the clock operator which does not operate on any variables.
The ffile operation determines if a file is available. The format is:
ffile(varlit) 

varlit is a variable or literal that contains the name of the file.
If the file could not be found, the logical value result is false. If the file is found, the logical value result is
true. If the file can be opened in exclusive read/write mode, the value of the string is null (length of zero);

Page 25

otherwise the value is a string that contains an error message and the length is the length of the error
message.
The getpos operation returns the current file position associated with a file. The format is:
getpos(var) 

var is a variable that is associated with an open file
If the variable is not associated with an open file, then the logical value result is false. If it is associated
with a file that is open, the logical value is true and the resulting string value is the current file position.
The getlastpos operation returns the file position of the most recent access to a file. The format is:
getlastpos(var) 

var is a file variable
If the variable is not associated with an open file, then the logical value result is false. If it is associated
with a file that is open, the logical value is true and the resulting string value is the previous file position.
The clock operation returns the current date and time. The format is:
clock()

The value is the string that contains the date and time in the format:
yyyy/mm/dd hh:mm:ss. The length is set to 19. The logical value result is true.

Page 26

copy

The copy utility copies an input file to an output file on another disk. The format of the copy command
line is:
copy file1 file2 [-cfg=filename] [-d] [-j[r]] [-o=filename]
file1 is the name of the input file. If no extension is specified, .txt is assumed. The search path for

the source file is controlled with the dbcdx.file.open runtime property.
file2 is the name of the output file. If no extension is specified, .txt is assumed. The search and

create path for the output file is controlled with the dbcdx.file.open and dbcdx.file.prep
runtime properties.

-cfg=filename is the runtime property file.
-d	 is the delete input file parameter. If the copy command is successful, then the input file is

deleted.
-j[r] is the share open mode parameter. The -j parameter causes the input file to be opened in

share read/write mode. The -jr parameter causes the input file to be opened in share read-
only mode.

-o=filename is the option file parameter. filename is the name of a user-created file containing options. It is
useful when the number of options is too large to fit on one command line.

The copy utility returns a return code of zero if copy completes successfully. The return code is non-zero
if copy does not complete successfully. If the return code is non-zero and copy is running under chain
execution, then chain execution is aborted.

Page 27

create

The create utility creates a file. If the designated file already exists, it is truncated, effectively erasing any
existing
records. The format of the create command line is:
create file1 [-cfg=filename] [-l=n] [-n=n] [-o=filename] [-t[=type]]
file1 is the name of the file to be created. If no extension is specified, .txt is assumed. The search

and create path for the output file is controlled with the dbcdx.file.open and dbcdx.file.prep
runtime properties.

-cfg=filename is the runtime property file.
-l=n is the length parameter. n is the length of the records. n is a number between 1 and 8192. This

parameter must be used in conjunction with the -n parameter to create a file with the
specified number of length n blank records.

-n=n is the number of records parameter. This parameter must be used in conjunction with the -l
parameter to create a file with the specified number of length n blank records.

-o=filename is the options file parameter. filename is the name of a user-created file containing options. It
is useful when the number of options is too large to fit on one command line.

-t[=type] is the output file type option. type can be data, crlf, text, or std. The default is to create DB/C 
standard text file (std). Under Windows, text is the equivalent to crlf; otherwise, text is the
equivalent to data. If type is omitted, text is assumed.

The create utility returns a return code of zero if create completes successfully. The return code is non-
zero if create does not complete successfully. If the return code is non-zero and create is running under
chain execution, then chain execution is aborted.

Page 28

delete

The delete utility deletes the specified file. The format of the delete command line is:
delete file1 [-cfg=filename]
file1 is the name of the file to be deleted. If no extension is specified, .txt is assumed. The search

path for the file is controlled with the dbcdx.file.open runtime property.
-cfg=filename is the runtime property file.
The delete utility returns a return code of zero if file1 exists and is successfully deleted. The command also
returns a return code of zero if file1 could not be found and will display a message indicating it. The
command returns a nonzero return code if file1 exists and cannot be opened or is not specified. If the
return code is non-zero and delete is running under chain execution, the chain execution is aborted.

Page 29

dump

The dump utility allows examination and alteration of any file. The format of the dump command line is:
dump [file1] [-b[=n]] [-cfg=filename] [-j[r]] [-o=filename] [-v]
file1 is the name of the file to be examined and possibly altered. If no extension is specified, .txt is

assumed. The search path for the input file is controlled with the dbcdx.file.open runtime
property.

-b[=n] is the block size parameter. n is a number between 1 and 8192. It is the number of bytes that
are read from the file. If n is not specified, the default is 400 bytes. If -b is not specified, the
block size is set to the size of the first record in the file.

-cfg=filename is the runtime property file
-j[r] is the share open mode parameter. The -j parameter causes the input file to be opened in

share read/write mode. The -jr parameter causes the input file to be opened in share read-
only mode.

-o=filename is the options file parameter. filename is the name of a user-created file containing options. It is
useful when the number of options is too large to fit on one command line.

-v	 is the ignore dbcdx.display and dbcdx.keyin runtime properties.
When the dump command is invoked, the prompt CMD: is displayed. The user may enter commands at
this prompt. The commands available are:

b	 change block size 
c	 Change to character mode 
d	 decrease the current block pointer by one and display that block 
e	 go to the end of file 
f	 fill all bytes in the current block with fill character 
h	 change to hex mode 
i	 increment the current block pointer and display that block 
k	 read by block number 
l	 change fill character 
m	 modify bytes in the current block 
n	 specify a new file to dump 
o	 read by position 
p	 show another page of the block (for blocks > 400 bytes) 
q	 quit and exit to operating system 
r	 read in a block of data and display it 
s	 search the file for occurrence of a string 
u	 decompress a portion of the current block 
w	 write the current block 
?	 display this screen

The dump commands allow a block of data to be read from the file, displayed or altered, and then written
back to the disk. The default block size is the length of the first record. The block size may be changed
with the -b command line parameter or the b dump command. The mechanism for specifying the data to
be read from the file is either by block number or by file position. This may also be changed with the k
and o commands.
When in hexadecimal mode for a search or modify or when entering the fill character, entering #dd
(where d is a digit or period) causes the two characters after the # to be converted to a single byte that is
the compressed representation of those two characters.

Page 30

edit

edit is a full-screen source code editor. The format of the edit command line is:
edit [file1] [-a=n] [-cfg=filename] [-t=type] [-v]
file1 is the name of the file to be edited. If no extension is specified, .txt is assumed. If the file does

not exist, it is created. This file can be any text type file. The search path is controlled with the
dbcdx.file.source runtime property.

-a=n is the memory allocation parameter. The -a parameter allows the user to specify the amount
of memory available for files that are being edited. n is the amount of memory in kilobytes.

-cfg=filename is the runtime property file.
-t=type is the output file type option. type can be data, crlf, text, or std. If the file does not exist, this

option can control the type of file created. The default is to create text type text file. Under
Windows, text is the equivalent to crlf; otherwise, text is the equivalent to data.

-v	 is the ignore dbcdx.display and dbcdx.keyin runtime properties.

Configuration
All editor functions and commands may be configured for different keyboards and operating
environments. The Set Options command in the editor allows the user to alter key settings. The default
keystroke for the Set Options command is Ctrl-O. The option settings screen shows all available functions
and commands.
More information about the option settings screen is provided later in the chapter.

Overview of the Editor
When the edit command is invoked, the edit screen is displayed.
The top line of the screen is the response line. This line displays pertinent information. It also prompts the
user for input during execution of certain commands. The file name, the current line number, the total
number of lines in the file, and the current buffer are displayed at the far right of the response line.
A horizontal line is displayed on the second line of the screen.
All lines between the third line and the last line on the screen are used to display the file being edited.

Commands
Exit

Default key: Ctrl-X
This command is used to exit the editor. If the current file has been modified since the last time it
was written to disk, then the message OK to lose changes? is displayed on the response line. If
the user types Y or y, then all the changes made since the last time the file was written to disk are
lost, and control returns to the operating system. If the user types any other letter, then nothing
occurs.

Move Cursor Left
Default key: LEFT
This command moves the cursor one position to the left. If the current line is longer than the
width of the screen and the cursor is positioned at the far left position of the screen, then the
screen is scrolled.

Page 31

Move Cursor Right
Default key: RIGHT
This command moves the cursor one position to the right. If the current line is longer than the
width of the screen and the cursor is positioned at the far right position on the screen, then the
screen is scrolled.

Move Cursor Up
Default key: UP
This command moves the cursor up one line. The horizontal position of the cursor does not
change. If the line above the current line is shorter than the current line, then the cursor is
positioned at the end of the line above the current line. If the cursor is currently positioned at the
first line on the screen, then the screen is scrolled.

Move Cursor Down
Default key: DOWN
This command moves the cursor down one line. The horizontal position of the cursor does not
change. If the line below the current line is shorter than the current line, then the cursor is
positioned at the end of the line below the current line. If the cursor is currently positioned at the
last line on the screen, then the screen is scrolled.

Move Cursor One Word Left
Default key: Ctrl-LEFT
This command moves the cursor to the beginning of the previous word, even if the previous
word is on a previous line. If necessary, the screen is scrolled.

Move Cursor One Word Right
Default key: Ctrl-RIGHT
This command moves the cursor to the beginning of the next word, even if the next word is on a
subsequent line. If necessary, the screen is scrolled.

Move Cursor to Line Start
Default key: F5
This command moves the cursor to the beginning of the current line. If necessary, the screen is
scrolled.

Move Cursor to Line End
Default key: F6
This command moves the cursor to the end of the current line. If necessary, the screen is scrolled.

Move Cursor to First Line of Buffer
Default key: HOME
This command moves the cursor to the first character of the first line of the current buffer.

Move Cursor to Last Line of Buffer
Default key: END
This command moves the cursor to the first character of the last line of the current buffer.

Move Cursor to First Line of Window
Default key: Ctrl-HOME
This command moves the cursor to the first character of the first line on the current screen.

Move Cursor to Last Line of Window
Default key: Ctrl-END
This command moves the cursor to the first position of the last line of the current screen.

Page 32

Page Up
Default key: PGUP
This command displays the previous screen of the file.

Page Down
Default key: PGDN
This command displays the next screen of the file.

Scroll Window Up
Default key: Ctrl-UP
This command scrolls the current window up one line without changing the relative cursor
position on the screen.

Scroll Window Down
Default key: Ctrl-DOWN
This command scrolls the current window down one line without changing the relative cursor
position on thescreen.

Go to Line Number
Default key: Ctrl-G
This command causes the message Line number: to appear on the response line. If a valid line
number is entered, the cursor is placed on the first character of the specified line. If the line
number entered is less than one or greater than the total number of lines in the file, an error
message is displayed, and the user is prompted for another line number. If only the enter key is
pressed in response to the prompt, the cursor is placed on the first line of the marked block of
lines, regardless of which window is currently active.

Change Insert/Over Strike Mode
Default key: INSERT
This command is used to toggle between insert mode and over strike mode.
In insert mode, a character typed at the keyboard is inserted at the current cursor position. All the
characters on the current line that are to the right of the current cursor position are moved to the
right one position, and the length of the line is increased by one.
In over strike mode, every character typed at the keyboard over writes the character that is at the
current cursor position. The characters to the right of the current cursor position are unchanged,
and the length of the line does not change. In over strike mode, an O is displayed in reverse video
in the upper right corner of the screen.

New Line Before
Default key: Ctrl-B
This command inserts a new line directly above the current line. The cursor is moved to the first
position of the newly inserted line.

New Line After
Default key: Ctrl-A
This command inserts a new line directly after the current line. The cursor is moved to the first
position of the newly inserted line.

Split Current Line
Default key: ENTER, RETURN, or Ctrl-M
This command splits the current line at the current cursor position. All the characters to the right
of the current cursor position are moved to the next line. The cursor is moved to the first position
of the newly created line.

Page 33

Backspace
Default key: Ctrl-H or BACKSPACE
This command deletes the character immediately preceding the character at the current cursor
position. All the characters to the right of the deleted character on the current line are moved to
the left one position. The line length is decreased by one. If the cursor is currently at the first
position of a line, no change occurs.

Delete Character
Default key: DELETE
This command deletes the character at the current cursor position. All the characters to the right
of the deleted
character on the current line are moved to the left one position. The line length is decreased by
one. If the cursor
is positioned directly after the last character on a line, then the line following the current line is
appended to
the current line.

Delete Line
Default key: Ctrl-D
This command deletes the current line. The lines following the current line are moved up by one
line. The cursor is positioned at the first character on the line that replaces the deleted line.

Delete to Line End
Default key: Ctrl-L
This command deletes all the characters on the current line to the right of the cursor, including
the character at the current cursor position. The cursor position remains unchanged. If the cursor
is positioned beyond the last character on a line, no change occurs.

Undo Deleted Line
Default key: Ctrl-U
This command is used to re-insert the most recently deleted line. The line is inserted directly
above the line containing the cursor. Up to 100 previously deleted lines can be recovered using
the Undo Deleted Line command.

Mark Block
Default key: ESC
This command is used to create a block or group of lines that can be copied, moved, deleted, or
written to a new file. This command is issued twice to mark a block of lines: once on the first line
of the block of lines and again on the last line. The order in which the lines are marked is not
important. All lines between and including the first and the last line constitute the block. The
block of lines is displayed in reverse video. For all current windows, only one block at a time can
be marked. If the buffer containing the marked block is swapped for another, the marked block is
automatically unmarked.
The escape key may be pressed a third time to unmark a block. When a block is unmarked, the
lines are no longer displayed in reverse video.

Copy Marked Block
Default key: Ctrl-C
This command is used to copy a block of lines to a new place in a file. The block is inserted
directly after the line containing the cursor. The original marked block of lines remains
unchanged, so the file contains two identical copies of the group of lines. Only the original
marked block is displayed in reverse video.

Page 34

Move Marked Block
Default key: Ctrl-N
This command is used to move a block of lines to a new place in a file. The block is inserted
directly after the line containing the cursor, and the block is still displayed in reverse video.

Delete Marked Block
Default key: Ctrl-K
This command deletes a marked block of lines.

Search Forward
Default key: Ctrl-S
This command is used to search for a string of characters. The message Search Pattern: is
displayed on the response line. The search string entered by the user can be up to 30 characters
long. Only print able characters and blanks are allowed in the search string.
By default, the $ character as the first character of the search string is used to search for a string of
characters that is anchored at the start of a line. The ! character as the last character of the search
string is used to search for a string of characters that is anchored at the end of a line. The ?
character is used as the wild card character. The # forcing character is used to search for the wild
card character. These default characters can be altered on the option settings screen.
If the up arrow key is pressed in response to this prompt, the last search pattern entered is
retrieved.
The search begins at the current cursor position. The entire file is searched, including lines that
are longer than the width of the screen. If a match is found, the cursor is positioned at the
beginning of the string and the message Found is displayed on the response line. Otherwise, the
message Not found is displayed on the response line.
Searching may be case sensitive. Check the Case-Sensitive Search option on the option settings
screen.

Search Again
Default key: Ctrl-Z
This command repeats the last Search Forward.

Translate
Default key: Ctrl-T
This command translates a string of characters to a new string of characters. The message
Translate from: is displayed on the response line. The search pattern can be up to 30 characters
long. The search pattern may contain the ?, #, $ and ! characters as described in the Search
Forward section.
After a search pattern is entered, the message Translate to: is displayed. The replacement pattern
can be up to 30 characters long. The replacement pattern may contain the ? and # characters as
described in the Search Forward section.
The replacement pattern may also contain the ^ character. By default, this character is used to
insert the most recently matched search string. For example, assume the last search pattern was
a?c and the string abc was found. If a replacement pattern of ^d is specified, the replacement
string becomes abcd. The default insertion character, ^, can be altered on the option settings
screen.
If the up arrow key is pressed in response to these prompts, the last translate values entered are
retrieved.
The search begins at the current cursor position. If a match is found, the cursor is positioned at
the beginning of the string, and the message, local(L), global(G), marked (M), final(F),
skip(space bar), or quit(X)? is displayed on the response line.

Page 35

If the user enters L, the replacement is made, and the search continues. If another occurrence of
the search string is found, the message is displayed again.
If the user enters G, the replacement is made, and all other occurrenc es of the search string are
replaced by the replacement string.
If the user enters M, the replacement is made only to all occurrences of the search string found
within the block of marked lines.
If the user enters F, the replacement is made, but the search does not continue and the Translate
command is terminated.
If the user presses the space bar, the replacement is not made, but the search continues. If another
occurrence of the search string is found, the message is displayed again.
If the user enters X, the replacement is not made and the Translate command is1 terminated.
When all translations are completed, the total number of translations made is displayed.
Searching may be case sensitive and is controlled by the Case-Sensitive Search option on the
option settings screen. The case sensitivity option has no effect on the case of replacement
characters.

Read File
Default key: Ctrl-E
This command reads a new file. If any changes were made to the current file before the Read File
command is issued, the message, OK to lose changes? is displayed on the response line.
If the user types a letter Y or y, then all changes made since the last time the file was written to
disk are lost. The prompt File to edit: is displayed on the response line. The user may enter the
name of the new file to be edited. If the specified file cannot be found, the message: File not found
- new file assumed is displayed.
If the user responds with anything other than a letter y to the OK to lose changes? message, then
no action takes place.

Write File
Default key: Ctrl-W
This command writes the current file to disk. If a copy of the file already exists on disk, then the
name of the older copy is changed so that it has three underscore characters (_ _ _) as the
extension. In this way, the newly edited file is always written to disk with the original name and
the user always has a copy of the file as it was before the most recent editing session.

Write Marked Block
Default key: Ctrl-V
This command causes the marked block to be written to disk. The message File to Write: is
displayed on the response line. This command can only be used when a block is currently
marked using the Mark Block command.

Change File Name
Default key: Ctrl-F
This command is used to change the name of the file being edited. The prompt New file name: is
displayed on the response line. This command does not write the file to disk. It simply changes
the name of the file in memory. The file is not written to disk until the Write File command is
issued.

Merge File
Default key: Ctrl-Y
This command copies the lines contained in one file to the file currently being edited. When this
command is invoked, the message File to merge: is displayed on the response line. A copy of the

Page 36

lines of the new file are inserted directly above the line containing the cursor. Changes to these
lines do not affect the merged file in any way. The name of the current file does not change.

Change Edit Window
Default key: F1
This key is used to edit text in another window. A maximum of two windows may be open
simultaneously.
The full-screen window is Window 1. If the F1 key is pressed when only Window 1 exists, then
the current window is split into two smaller windows. The split happens at the line number
specified in the Window Split Line option on the option settings screen. The screen below the
horizontal line is cleared and the cursor is positioned in the upper left corner of the second
window. This new window is Window 2. All the commands that can be executed in Window 1
can be executed in Window 2. The user can edit a new file, make changes, save the new file, copy
text from the file in one window to the file in the other window, etc.
This key also determines which window is currently active. Control may be transferred among
the windows by pressing the F1 key. The cursor moves to Window 1 when the F1 key is pressed.
The cursor moves to Window 2 when the F1 key is pressed again.

Change to Next Buffer
Default key: F3
This command allows the user to edit up to nine files at one time. Each file is contained in a
different buffer. This command places a specified buffer into the active window. Only a buffer
contained in a window can be edited.
The buffer(s) that may be edited in a window are specified on the option settings screen. When
the F3 key is pressed, the next buffer is placed in the active window. For example, assume the
option settings screen specifies that buffers 1, 3, and 9 may be displayed in window 1. If buffer 3
is currently displayed and the F3 key is pressed, buffer 9 will be displayed in window 1.

Change to Previous Buffer
Default key: F4
This command is similar to the Change to Next Buffer command, except that it changes to the
prior buffer instead of the next buffer for the active window.

Close Lower Window
Default key: F2
This command restores the first window (window 1) to the full size of the screen and closes the
lower edit window. The text in the other window is not lost. The user can issue the Change Edit
Window command, and the text in the second window will be displayed in the exact condition it
was in before the Close Lower Window command was issued. The Close Lower Window
command is ignored unless two windows are open.

Key Recorder On/Off
Default key: Ctrl-R
This command turns on and off the key recorder feature. When this command is issued, a letter R
is displayed in reverse video in the upper right corner of the screen. Any keys pressed after that
point are recorded. When this command is issued a second time, key recording is turned off. This
command is used in conjunction with the Playback Recorded Keystrokes command.

Playback Recorded Keystrokes
Default key: Ctrl-P
This command is used in conjunction with the Key Recorder command. It causes the previously
recorded keys to be played back. This is a very useful feature because it allows the user to enter a
complicated series of commands and key strokes, and then repeat those commands any number
of times with out having to retype.

Page 37

Save Recorded Keystrokes in File
Default key: F7
This command allows the user to save recorded keystrokes in a file. When this command is
issued, the message File to write re corded keystrokes to: is displayed. Enter the file name. The
recorded key strokes will be saved in the specified file. A default extension of .rec will
automatically be appended to the file name, replacing the extension if it was specified.

Playback Recorded Keystrokes in File
Default key: F8
This command allows the user to play back any recorded key strokes that were previously saved
in a file using the Save Recorded Keystrokes in File command. When this command is issued, the
message Playback file name: is displayed. Enter the file name. The contents of the specified file
will be played back.
Nested files may not be played back. For example, assume key strokes were saved in a file called
nestfile.rec. A user presses Ctrl-R to begin recording and types the letters abc. Then the user uses
the F8 key to play back the contents of nestfile.rec. He then presses Ctrl-R to stop recording and
uses F7 to save the key strokes to newfile.rec. When the user plays back newfile.rec using F8,
only the letters abc are displayed. The contents of the nested keystroke file are ignored.

Playback File Keystrokes Again
Default key: Ctrl-Q
This command plays back the contents of the file that were last played back using F8.

Set Options
Default key: Ctrl-O
This command is used to view or set options and keystrokes that execute the edit commands.
When the Set Options command is issued, the option settings screen containing all the edit
commands is displayed. The arrow (->) points to the current option. To change the value of that
option, press the C key (change). Changes are effective immediately. To scroll the pointer to the
current option, press the U key (up) or the D key (down). Press the P key (page) to change to the
next option page. Press the X key (exit) to return normal edit mode.

Page 38

encode

The encode utility allows files of any format to be converted to standard 80 characters per line text files
and then back to binary files. This procedure is typically used to allow transmission of .dbc type files via
mechanisms that do not allow binary mode transmission. The format of the encode command line is:
encode file1 [file2] [-cfg=filename] [-d] [-j[r]] [-o=filename]
file1 is the name of the input file. If no extension is specified and the -d parameter is not

specified, .dbc is assumed. If no extension is specified and the -d parameter is specified, .txt is
assumed. The search path for the input file is controlled with the dbcdx.file.open runtime
property.

file2 is the name of the output file. If file2 is not specified and -d is not specified, file1 with an
extension of .txt is assumed. If file2 is not specified and -d is specified, file1 with an extension
of .dbc is assumed. If file2 is specified without an extension and -d is not specified, .txt is
assumed. If file2 is specified without an extension and -d is specified, .dbc is assumed. The
search path for the input file is controlled with the dbcdx.file.open and dbcdx.file.prep
runtime properties.

-cfg=filename is the runtime property file.
-d	 is the decode parameter. If not specified, the input binary file is encoded into the output text

file. If -d is specified, the input text file is decoded into the output binary file.
-j[r] is the share open mode parameter. The -j parameter causes the input file to be opened in

share read/write mode. The -jr parameter causes the input file to be opened in share read-
only mode.

-o=filename is the options file parameter. filename is the name of a user-created file containing options. It is
useful when the number of options is too large to fit on one command line. when the number
of options is too large to fit on one command line.

The encode utility returns a return code of zero if it completes successfully. Otherwise, it returns a non-
zero return code. If the return code is non-zero and encode is running under chain execution, the chain
execution is aborted.

Page 39

exist

The exist utility tests for the existence of a file. The exist utility can detect a file that is opened exclusively
by a task that is executing simultaneously. The format of exist the command line is:
exist file1 [-a] [-c] [-cfg=filename] [-d] [-f] [-l] [-p] [-s] [-w]
file1 is the name of the file. If no extension is specified, .txt is assumed. The search path for the file

is controlled by the dbcdx.file.open runtime property.
-a	 is the search all file paths parameter. It is has the same effect as specifying all other

parameters in dividually.
-c	 is the search using the dbcdx.file.editcfg runtime property.
-cfg=filename is the runtime property file.
-d	 is the search using the dbcdx.file.dbc runtime property.
-f	 is the search using the dbcdx.file.open runtime property.
-i	 is the search using the dbcdx.file.image runtime property.
-p	 is the search using the dbcdx.file.prep runtime property.
-s	 is the search using the dbcdx.file.source runtime property.
-w	 is the search current directory parameter.
If the file is found, the exist utility displays the file name and the file path, and returns a return code of
zero. If the file is not found, the exist utility displays the message File does not exist, and returns a non-
zero return code. If the return code is non-zero and exist is running under chain execution, the chain
execution is aborted.

Page 40

filechk

The filechk utility checks the content of files. It is used to diagnose corrupted files or other problems. The
format of the filechk command line is:
filechk file1 [-a] [-c] [-cfg=filename] [-e] [-f] [-i] [-j[r]] [-l=n] [-o=filename] [-p] [-t=type] [-x]
file1 is the name of the input file. If no extension is specified, .txt is assumed. The search path for

the input file is controlled with the dbcdx.file.open runtime property.
-a	 is the AIM file information parameter. Information about the .aim file is displayed.
-c	 is the change parameter. If -c is specified, when any statistic is changed, all of the statistics are

displayed. If -c is not specified, the statistics are only displayed when the end of file is found.
-cfg=filename is the runtime property file.
-e	 is the turn off exit status parameter. This parameter causes the exit code not to be set to one

when an eof character is en countered in the middle of the file. This is useful to prevent a
chain from aborting.

-f	 is the fix end-of-file parameter. This parameter causes filechk to modify the end of file to
correct the eof character. The -t parameter can be used to specify the type of file to modify.
Otherwise, filechk tries to determine the file type. If the file type cannot be determined, then
filechk displays a message and does nothing.

-i	 is the INDEX file information parameter. Information about the .isi file is displayed.
-j[r] is the share open mode parameter. The -j parameter causes the input file to be opened in

share read/write mode. The -jr parameter causes the input file to be opened in share read-
only mode.

-l=n is the record length parameter. n is a number between 1 and 65500. filechk displays a message
whenever it encounters a record with length different than n.

-o=filename is the options file parameter. filename is the name of a user-created file containing options. It is
useful when the number of options is too large to fit on one command line.

-p	 is the program file information parameter. This parameter displays information about
the .dbc file created by dbcmp.

-t=type is the force file type option. type can be data, crlf, text, or std. filechk determines the type of
file from the last 1 or 2 bytes of the file. If the last byte(s) are invalid, this option is helpful to
prevent filechk from aborting while determining the text file type. It is suggested that this
option also be specified when using the -f option. Under Windows, text is the equivalent to
crlf; otherwise, text is the equivalent to data.

-x	 is the extra information parameter. For .txt files, this parameter causes a special message to be
displayed for each record that contains a non-printable control character. For .aim and .isi
files, other information is printed.

Page 41

index

The index utility creates a special index file from a text file. The special index file is used by DB/C DX for
IFILE type files. The format of the index command line is:
index file1 [file2] key-spec [key-spec...] [-a=n] [-b=n] [-cfg=filename] [-d] [-e] [-f=filename] [-j[r]] 

[-k=keytagfile] [-o=filename] [or] [-pn[-n]eqc[c...]] [-pn[-n]nec[c...]]] [-pn[-n]gtc[c...]]] 
[-pn[-n]gec[c...]]] [-pn[-n]ltc[c...]]] [-pn[-n]lec[c...]] [-r] [-s[=n]] [-t] [-w=filename] 
[-x] [-y]

file1 is the name of the input text file. If no extension is specified, .txt is assumed. This file can be
any text type file. The search path for the input file is controlled with the dbcdx.file.open
runtime property.

file2 is the name of the output index file. If file2 is not specified, file1 with an extension of .isi is
assumed. If file2 is specified without an extension, .isi is assumed. The search and create path
for the output file is controlled with the dbcdx.file.open and dbcdx.file.prep runtime
properties.

key-spec is a key specification. Valid key specifications are of the form nnn or nnn-nnn where nnn is the
character position and nnn-nnn is the range of character positions from each input file text
record that is used as a key. nnn is a number between 1 and 65500. More than one key
specification may be designated. The maximum length of all keys is 255 characters.

-a=n is the memory allocation parameter where n is a one to three-digit number. n multiplied by
1024 is the number of bytes of memory that is allocated for this utility. This parameter affects
only the performance of the index command.

-b=n is the block size parameter. Valid block size values are limited to 512, 1024, 2048, 4096, 8192,
and 16384. The default block size value is 1024. In some cases, increasing this parameter can
increase performance.

-cfg=filename is the runtime property file.
-d	 is the duplicate keys allowed parameter. If not specified, duplicate keys are not allowed in

the file and an error message is displayed if any duplicates are encountered. -d and -f are
mutually exclusive.

-e	 is the existing command line parameters option. When this option is specified, the index
command utilizes the command line parameters that are stored in the existing .isi file. If the
existing .isi file was created using the prepare statement rather than the index command, the
command line parameters will not be present in the .isi file and the -e option cannot be used.
-e is mutually exclusive with all other command line options.

-f=filename is the duplicate key file option. When this option is specified, if any duplicate keys are
encountered, they are written to the DB/C type file named filename. -d and -f are mutually
exclusive.

-j[r] is the share open mode parameter. The -j parameter causes the input file to be opened in
share read/write mode. The -jr parameter causes the input file to be opened in share read-
only mode.

-k=keytagfile is the keytag input file option. When this option is specified, the keytag file contains records
that contain keys and record positions. In the keytag file, the first 12 characters of each record
are the text file position and the rest of the record is the key. All records in the keytag file
must be the same length. file1 is not read, but its filename is stored in the output file, file2.

-o=filename is the options file parameter. filename is the name of a user-created file containing options. It is
useful when the number of options is too large to fit on one command line.

or	 is the logical or parameter. If the or parameter is placed between two -p parameters, they are
logically OR-ed together instead of logically AND-ed together. The precedence of all -p
operations is from left to right.

Page 42

-pn[-n]eqc[c...]
-pn[-n]nec[c...]
-pn[-n]gtc[c...]

-pn[-n]gec[c...]
-pn[-n]ltc[c...]
-pn[-n]lec[c...] are the record select range parameters. n may be a one to four digit decimal number. c is

the match character. The key of a record is included in the index if the record contains a
character that is equal, not equal, greater than, greater than or equal, less than, or less than or
equal to (respectively) the match character at character position n. Otherwise, the record is
ignored. = may be used instead of eq. # may be used instead of ne. The optional n-n is used
to specify a range of character positions. If a range is specified, the number of match
characters specified should be the same as the number of positions in the range. If the
number of match characters specified is less than the number of positions in the range, it is
assumed that the unspecified match characters are blanks. If the number of match characters
specified is greater than the number of positions in the range, the extra match characters are
truncated. If more than one -p parameter is specified, they are logically AND-ed together. For
example: 

-p5eqxy
causes the records with a match character at the fifth character position equal to x or equal to
y to be selected.

-r	 is the rename file parameter. This parameter changes the name of the text file stored in the
index file to the specified input text file name. This parameter is mutually exclusive with all
other parameters. Both the input text file and the output index file must be specified.

-s[=n] is the space reclamation parameter. If this parameter is specified, records written to the file
will reuse the space made available by deleted records whenever possible. This parameter
can only be specified if the records in the file are decompressed and all the same length. The
actual record size (n) only needs to be specified if the input file is initially empty. n is a
number between 1 and 65500. Read performance is not affected by this parameter. Write
performance is usually slightly worsened if this parameter is specified.

-t	 is the limited text file search parameter. If this parameter is specified, the utility will only look
for the text file in the same directory in which the index file is found.

-w=filename is the work file parameter. If not specified, the default work file name is sort.wrk.
-x	 is the reverse selection parameter. This parameter causes those records that are selected by

the -p parameter to be excluded from the output file and those records not selected to be
written into the output file.

-y	 is the test end of file parameter. This parameter causes aimdex to fail if an end of file
character is encountered other than at the physical end of file.

The index utility creates a work file in the current directory. The amount of space in bytes that must be
available for this file is:

1.6 * k * n where k is the key length plus 6, and n is the number of records to be indexed
If the dbcdx.file.collate runtime property is specified, it is used to translate each record and determine
the record's position in the index.
The index utility returns a return code of zero if index completes successfully. The return code is non-zero
if index does not complete successfully. If the return code is non-zero and index is running under chain
execution, then chain execution is aborted.

Page 43

library

The library utility provides access to the library manager utility. The format of the command line is:
library file1 [-a=filename [membername]] [-c] [-cfg=filename] [-d=membername] [-e=name [filename]] 

[-j[r]] [-l] [-n=membername1 membername2] [-o=filename] [-r=filename [membername]] [-v]
file1 is the name of the library. If the extension is not specified, .lib is assumed. If file1 does not

exist, it is created. The search path is the current directory only.
-a=filename [membername] is the add parameter. filename is the name of the file to be added to the library.

If an extension is not specified, .txt is assumed. membername is the optional member name. If
not specified, the member name is the same as filename.

-c	 is the compression parameter. A new library is created and all the members of the original
library are copied to the new library in compressed format. Then the original library is
deleted and the new library is renamed to the name of the original library.

-cfg=filename is the runtime property file.
-d=membername is the delete parameter. The member specified by membername is deleted from the library.
-e=name [filename] is the extract parameter. The member specified by name is extracted from the library.

If the optional filename exists, it is extracted to the name filename. If no extension is
specified, .txt is assumed. If the optional filename does not exist, then it is extracted to a file
with filename the same as the member name with a .txt extension.

-j[r] is the share open mode parameter. The -j parameter causes the input file to be opened in
share read/write mode. The -jr parameter causes the input file to be opened in share read-
only mode.

-l	 is the list parameter. The names of all the library members, sizes, and time stamps are
displayed.

-n=membername1 membername2 is the rename parameter. The member called membername1 is renamed to
membername2.

-o=filename is the options file parameter. filename is the name of a user-created file containing options. It is
useful when the number of options is too large to fit on one command line.

-r=filename [membername] is the replace parameter. filename is the name of the file to be replaced in the
library. If an extension is not specified, .txt is assumed. membername is the optional member
name. If not specified, the member name is the same as filename.

-v	 is the ignore dbcdx.display and dbcdx.keyin runtime properties.
If the library utility is invoked with any command line parameter except -o or -j, then the specified
operation takes place. Parameters can be specified multiple times. They are executed in the order in
which they appear on the command line.
If the library utility is invoked with no command line parameters or with the -o or -j parameters, then the
library command executes in interactive mode. The cmd: prompt is displayed.
Valid commands are as follows:

a=filename [membername] add file to library 
r=filename [membername] replace file in library 
e[=membername] filename extract file from library 
d=membername delete file from library 
n=membername membername rename file in library 
l	 	 	 	 	 list the members, sizes, and time stamps 
h	 	 	 	 	 display help screen 
q	 	 	 	 	 quit

Page 44

A comma may be specified between names. These commands work the same way as the corresponding
parameters on the command line. Only one command can be executed at a time. After a command
completes its task, the cmd: prompt is displayed again.

Page 45

list

The list utility displays a text file on the screen. The format of the list command line is:
list file1 [-a=key] [-b=n] [-c=n] [-cfg=filename] [-e=n] [-f] [-h=string] [-i[=key]] [-j[r]] [-l=n] 

[-n[=n]] [-o=filename] [or] [-pn[-n]eqc[c...]] [-pn[-n]nec[c...]]] [-pn[-n]gtc[c...]]] 
[-pn[-n]gec[c...]]] [-pn[-n]ltc[c...]]] [-pn[-n]lec[c...]] [-r=n] [-s=n] [-t=n] [-x[=n]]

file1 is the name of the file to be listed. If no extension is specified, .txt is assumed. This file can be
any text type file. The search path for the input file is controlled with the dbcdx.file.open
runtime property.

-a=key is the aimdex parameter. If specified, the records associated with key are listed. If the name of
the file does not have an extension, .aim is assumed. The -a, -i, -r, and -s parameters are
mutually exclusive.

-b=n is the bottom margin parameter. n is a one to three-digit number that is the number of blank
lines at the bottom of each page of the output. The -b and the -f parameters are mutually
exclusive.

-c=n is the column parameter. n is a one to four-digit number between 1 and 65500. When this
parameter is specified, the records are displayed starting with column number n in each
record. If not specified, the default starting column is one.

-cfg=filename is the runtime property file.
-e=n is the list last record parameter. The -e parameter lists the last n records that would be

displayed. n is a number between 1 and 999, inclusive. The -e parameter works for both
sequential and indexed access.

-f	 is the print formatted file parameter. The file to be listed is assumed to contain standard
ASCII carriage control characters in the first position of each record. The -n parameter and
the -f parameter are mutually exclusive.

-h=string is the header parameter. This parameter causes the string of characters and the page number
to appear on the third line of each page of the output. If the -h parameter is specified and the
-p parameter is not specified, the number of lines on each page is defaulted to 57. If the -t
parameter is not specified, the top margin is six lines long. If the -b parameter is not specified,
the bottom margin is three lines long. The -h and -f parameters are mutually exclusive.

-i[=key] is the index parameter. If the -i parameter is specified, the records are listed in key sequential
order. If key is also specified, then the records are listed in key sequential order starting with
the record associated with key. If the name of the file does not have an extension, .isi is
assumed. The -a, -i, -r, and -s parameters are mutually exclusive.

-j[r] is the share open mode parameter. The -j parameter causes the input file to be opened in
share read/write mode. The -jr parameter causes the input file to be opened in share read-
only mode.

-l=n is the line size parameter, where n is the maximum line width in characters. n is a number
between 1 and 256. If a line is longer than n characters, then only n characters of the line are
listed. If this parameter is not specified and -f is not specified, the default line width is 79. If
this parameter is not specified and -f is specified, the default line width is 256.

-n[=n] is the numbering parameter. If specified, line numbers are displayed to the left of each line as
it is displayed. If n is specified, then n specifies the width in characters of the line numbers.
The default width is 6. The -n parameter and the -f parameter are mutually exclusive.

-o=filename is the options file parameter. filename is the name of a user-created file containing options. It is
useful when the number of options is too large to fit on one command line.

or	 is the logical or parameter. If the or parameter is placed between two -p parameters, they are
logically OR-ed together instead of logically AND-ed together. The precedence of all -p
operations is from left to right.

Page 46

-pn[-n]eqc[c...]
-pn[-n]nec[c...]
-pn[-n]gtc[c...]

-pn[-n]gec[c...]
-pn[-n]ltc[c...]
-pn[-n]lec[c...] are the record select range parameters. n may be a one to four digit decimal number. c is

the match character. The record is listed if the record contains a character that is equal, not
equal, greater than, greater than or equal, less than, or less than or equal to (respectively) the
match character at character position n. Otherwise, the record is ignored. = may be used
instead of eq. # may be used instead of ne. The optional n-n is used to specify a range of
character positions. If a range is specified, the number of match characters specified should
be the same as the number of positions in the range. If the number of match characters
specified is less than the number of positions in the range, it is assumed that the unspecified
match characters are blanks. If the number of match characters specified is greater than the
number of positions in the range, the extra match characters are truncated. If more than one
-p parameter is specified, they are logically AND-ed together. For example: 

-p5eqxy
causes the records with a match character at the fifth character position equal to x or equal to
y to be selected.

-r=n is the record number parameter. n is a one to nine-digit record number. This parameter causes
the file to be listed starting at the record number specified. The -a, -i, -r, and -s parameters are
mutually exclusive.

-s=n is the starting position parameter. n is a one to nine-digit number that is the file position in
bytes. This parameter causes the file to be listed starting at the specified starting position. The
-a, -i, -r, and -s parameters are mutually exclusive.

-t=n is the top margin parameter. n is a one to three-digit number that is the number of blank lines
at the top of each page of the output. If the -t parameter is specified and the -h parameter is
not specified, then the file name (file1) and the page number appear on the third line of each
page of the output. If -h is specified, then the string appears on the third line of each page of
the output. In either case, if n is less than three, then no header line appears. The -t and -f
parameters are mutually exclusive.

-x[=n] without =n is the reverse selection parameter. This parameter causes those records that are
selected by the -p parameter to be excluded from the output file and those records not
selected to be written into the output file. -x with =n specified is the tab position specifier
parameter. n is a number between 1 and 65500 that is the position of the character that the tab
character represents. This parameter may be specified up to 30 times.

The list utility returns a return code of zero if list completes successfully. The return code is non-zero if list
does not complete successfully. If the return code is non-zero and list is running under chain execution,
then chain execution is aborted.

Page 47

reformat

The reformat utility copies an input text file to an output text file and re for mats the new file. Deleted
records are not copied. The syntax of the reformat command line is:
reformat file1 file2 [field-spec...] [-a] [-b=nnn] [-c] [-cfg=filename] [-f=string] [-i] 

[-fpn[-n]eqc[c...] r[r...]] [-fpn[-n]nec[c...] r[r...]] [-fpn[-n]gtc[c...] r[r...]] 
[-fpn[-n]gec[c...] r[r...]] [-fpn[-n]ltc[c...] r[r...]] [-fpn[-n]lec[c...] r[r...]] 
[-frn[-n]=filename] [-frbn[-n]=filename] [-j[r]] [-k] [-l=n] [-n=filename] 
[-o=filename] [or] [-pn[-n]eqc[c...]] [-pn[-n]nec[c...]] [-pn[-n]gtc[c...]] 
[-pn[-n]gec[c...]] [-pn[-n]ltc[c...]] [-pn[-n]lec[c...]] [-r] [-s=filename] 
[-t[=type]] [-v] [-x[=n]] [-y] [-z=nnn] [-zc=nn] [-zd=nnn] [-zr=nnn] [-zx=nnn]

file1 is the name of the input file. If no extension is specified, .txt is assumed. This file can be any
text type file. The name of the input file and the name of the output file must be different. The
search path for the input file is con trolled with the dbcdx.file.open runtime property.

file2 is the name of the output file. If no extension is specified, .txt is assumed. The name of the
input file and the name of the output file must be different. The search and create path for the
output file is controlled with the dbcdx.file.open and dbcdx.file.prep runtime properties.

field-spec is the field specification parameter. It may be included multiple times. If this parameter is not
specified, the entire record is copied from the input file to the output file. Valid field
specifications are of the form nnnn or nnnn-nnnn, where nnnn is a character position and
nnnn-nnnn is a range of character positions. nnnn is a one to four-digit decimal number from
1 to 65500. The contents of the input records at the character positions are appended to the
specified output record.

-a	 appends the records from the input file to the output file. This implies that the output file
must already exist. If the -a parameter is not specified, then the records are placed into the
output file as the first records, overwriting any records that already exist. If this parameter is
specified, then the output file type is not changed, and the -t parameter is ignored if it is
selected.

-b=nnnnn is the field blank parameter. This parameter is used to insert n blanks into the reformatted
records. It is typically used in conjunction with the field specification parameter and may be
included multiple times.

-c	 means that the output file is of DB/C-type compressed format. The -c and -t parameters are
mutually exclusive.

-cfg=filename is the runtime property file.
-f=string is the field string parameter where string is a string of characters enclosed in quotation

marks. This parameter is used to insert a string of characters into the reformatted records. It is
typically used in conjunction with the field specification parameter and may be included
multiple times. If double quotation marks must be contained in the character string, the
quotation marks must be preceded with a back slash character (\).

[-fpn[-n]eqc[c...] r[r...]]
[-fpn[-n]nec[c...] r[r...]]
[-fpn[-n]gtc[c...] r[r...]]
[-fpn[-n]gec[c...] r[r...]]
[-fpn[-n]ltc[c...] r[r...]]
[-fpn[-n]lec[c...] r[r...]] are the conditional string insertion parameters. n may be a one to four digit

decimal number. c is the match character. r is the insertion character. rr... are the insertion
characters. The insertion character or characters are inserted into only those records whose
character at the nth position of the that is equal, not equal, greater than, greater than or equal,
liss than, or less than or equal (respectively) the match character. = may be used instead of eq.
may be used instead of ne.

Page 48

The optional n-n is used to specify a range of character positions. If a range is specified, the
number of match characters specified must be the same as the number of positions in the
range.

-frn[-n]=filename
-frbn[-n]=filename are the field replacement parameters, where fr stands for field replacemtnt, and frb

stands for field replacement or blank fill. n is a one to five digit decimal number from 1 to
65500 specifying a character position. The optional n-n specifies a range of character
positions. filename is the name of a translate file. The translate file is a text file with records all
the same length and the length must be at least one larger than the size of the field being
replaced. The first m characters in each record, where m is the number of characters in the
input field, is the match value. The remaining characters in each record are the replacement
characters. If a match occurs, the replacement characters replace the matched characters. If no
match occurs, the field is left unchanged. If frb is specified, the same thing happens except if
no match occurs, the output field is filled with blanks. If no match occurs and the length of
the replacement characters is different from the match characters length, then the extra
characters are removed, or blanks are inserted, so that the resulting record length is the same
regardless of whether a replacement occurred or not.

-i	 is the tab insert parameter. If -i is not specified and one or more -x=n parameters are
specified, the operation is tab expansion. That is, tabs are removed from the input file and
expanded into blanks in the output file. If -i is specified and one or more -x=n parameters are
specified, the operation is tab compression. In this case, the output file must be a local text
file. Tabs are inserted, where appropriate, into the output file. These parameters are useful
when dealing with files created and used by different text editors.

-j[r] is the share open mode parameter. The -j parameter causes the input file to be opened in
share read/write mode. The -jr parameter causes the input file to be opened in share read-
only mode.

-k	 is the key tag parameter. This parameter causes the output file to contain the input record file
position as the first 12 characters of the output record.

-l=n is the length parameter. n is the length of the output records. n is a number between 1 and
65500. If the length of the input record is shorter than n, it is padded with blanks. If the length
of the input record is longer than n, it is truncated.

-n=filename is the read translate table. filename contains the 256 byte translate table applied to each
record as it is read.

-o=filename is the options file parameter. filename is the name of a user-created file containing options. It
is useful when the number of options is too large to fit on one command line.

or	 is the logical or parameter. If the or parameter is placed between two -p parameters, they are
logically OR-ed together instead of logically AND-ed together. The precedence of all -p
operations is from left to right.

-pn[-n]eqc[c...]
-pn[-n]nec[c...]
-pn[-n]gtc[c...]
-pn[-n]gec[c...]
-pn[-n]ltc[c...]
-pn[-n]lec[c...] are the record select range parameters. n may be a one to four-digit decimal number. . c is

the match character. Only those records with the character at the nth position of the file equal,
not equal, greater than, greater than or equal, less than, or less than or equal to (respectively)
the match character is copied to the output file. Otherwise, the record is ignored. = may be
used instead of eq. # may be used instead of ne.
The optional n-n is used to specify a range of character positions. If a range is specified, the
number of match characters specified should be the same as the number of positions in the
range. If the number of match characters specified is less than the number of positions in the
range, it is assumed that the unspecified match characters are blanks. If the number of match

Page 49

characters specified is greater than the number of positions in the range, the extra match
characters are truncated.
If more than one -p parameter is specified, they are logically AND-ed together.
For example:

-p5=xy

causes the records with a match character at the fifth character position equal to x or equal to
y to be selected.

-r	 is the reclaim parameter. This parameter copies the input file to the output file. Deleted
records are not copied. No other reformatting takes place. This parameter can significantly
decrease the time needed to reformat a file when the deletion of records is the only reformat
ting necessary. The -r and -t options are mutually exclusive and do not work together.

-s=filename is the unselected records output file parameter. All records that are not put into file2 are put
into filename. If no extension is specified, .txt is assumed.

-t[=type] is the output file type option. type can be data, crlf, text, or std. The default is to create DB/C
standard text file (std). Under Windows, text is the equivalent to crlf; otherwise, text is the
equivalent to data. If type is omitted, text is assumed.

-x[=n] without the =n is the reverse selection parameter. This parameter causes those records that
are selected by the -p parameter to be excluded from the output file and those records not
selected to be written into the output file. -x with the =n specified is the tab position specifier
parameter. This parameter works in conjunction with the -i parameter to convert files that
contain tabs. n is a number between 1 and 65500 that is the position of the character that the
tab character represents. This parameter may be specified up to 30 times.

-y	 is the test end of file parameter. This parameter causes reformat to fail if an end of file
character is encountered other than at the physical end of file.

-z=nnn is the convert 2 character year to 4 character year parameter. This parameter may be specified
one or more times. If the 2 characters at position nnn are 2 digits or a blank and a digit
respectively, then the numeric value is compared to the date cutoff value (-zc) and if greater,
then "19" is appended to the output record; otherwise, a "20" is appended to the output
record. Additionally, the 2 characters at position nnn are appended to the output record with
blank to zero conversion. If the 2 characters at position nnn are not a valid numeric value,
then 2 blank characters are appended to the output record followed by the 2 characters at
position nnn. When using the year conversion parameters, it is expected that field-specs will
also be specified.

-zc=nn is the date cutoff parameter used by the date conversion parameters. This parameter may be
specified one or more times. This parameter effects all year conversion parameters that follow
and therefore must be specified before the date conversion parameter(s) it applies to. Years
greater than this value will be considered to be year 1900. Years less than or equal to this
value will be considered to be year 2000. The default value for this parameter is "20".

-zd=nnn is the convert 2 character year to 4 character year parameter with year duplication. This
parameter is identical to the -z parameter, except if the 2 characters specified at position nnn
is not a valid number, then the same 2 characters are appended to the output before the 2
characters at position nnn are appended.

-zr=nnn is the convert 2 character reversed year to 4 character reversed year parameter. This
parameter may be specified one or more times. This parameter is identical to the -z
parameter, except the year is assumed to be reversed by subtracting the year from 99. The 4
character output is created by taking the input year, converting to 4 characters based on the
date cutoff value and then subtracting from 9999. For example " 3" representing the reversed
year 96 causes "8003" to be appended to the output record.

-zx=nnn is the convert 2 character year to 4 character year first alternate parameter. This parameter
may be specified one or more times. This parameter is identical to the -z parameter, except if

Page 50

the 2 characters at position nnn are " 0" or "00", then the behavior is different. In this situation
the character at position nnn is appended to the output record twice followed by the 2
characters at position nnn.

The reformat utility returns a return code of zero if reformat completes successfully. The return code is
non-zero if reformat does not complete successfully. If the return code is non-zero and reformat is
running under chain execution, then chain execution is aborted.

Page 51

rename

The rename utility changes the specified file name. The syntax of the rename command line is:
rename file1 file2 [-cfg=filename]
file1 is the file to be renamed. If no extension is specified, .txt is assumed. The search path for the

input file is controlled with the dbcdx.file.open runtime property.
file2 is the new file name. If no extension is specified, .txt is assumed.
-cfg=filename is the runtime property file.
The rename utility returns a return code of zero if rename completes successfully. The return code is non-
zero if rename does not complete successfully. If the return code is non-zero and rename is running under
chain execution, then chain execution is aborted.

Page 52

sort

The sort utility arranges records. Records from the input file are sorted and placed in the output file. The
syntax of the sort command line is:
sort file1 file2 sort-spec [sort-spec...] [-a=n] [-c] [-cfg=filename] [-f] [-gn=c] [-gn#c] [-hn=c] [-hn#c] 

[-j[r]] [-k] [-m=n] [-o=filename] [or] [-pn[-n]eqc[c...]] [-pn[-n]nec[c...]] [-pn[-n]gtc[c...]] 
[-pn[-n]gec[c...]] [-pn[-n]ltc[c...]] [-pn[-n]lec[c...]]] [-q] [-r] [-s] [-t[=type]] [-u] 
[-w=filename] [-x] [-y]

file1 is the name of the input file. If no extension is specified, .txt is assumed. This file can be any
text type file. The name of the input file and the name of the output file can be the same. The
search path for the input file is con trolled with the dbcdx.file.open runtime property.

file2 is the name of the output file. If no extension is specified, .txt is assumed. The name of the
input file and the name of the output file can be the same. The search and create path for the
output file is controlled with the dbcdx.file.open and dbcdx.file.prep runtime properties.

sort-spec is the sort specification. Valid sort specifications are of the form nnn, nnna, nnnd, nnn-nnn,
nnn-nnna, or nnn-nnnd where nnn is a character position and nnn-nnn is a range of character
positions from the input text record that are to be used as the key for the sort. nnn is a
number between 1 and 65500. If a is specified, then this key is sorted in ascending order.

-a=n is the memory allocation parameter where n is a one to three-digit number. n multiplied by
1024 is the amount of memory that is allocated for the internal work area.

-c	 causes the output file to be in compressed format. The -c and -t parameters are mutually
exclusive.

-cfg=filename is the runtime property file.
-f	 is the file position parameter. When this parameter is specified, each output file record

contains only the twelve-byte input file record position.
-gn=c is the group record equal parameter. n is a number between 1 and 65500. c is the match

character which may be any character in the standard character set. This parameter causes
only those records with the character c at position n to be sorted. All the records that do not
have the character c at position n are considered header records. They are included in the
output file in the same order they appeared in the input file. The group records are sorted
and written to the output file following the same header record they followed in the input
file. This parameter is mutually exclusive with the -h parameter.

-gn#c is the group record not equal parameter. n is a number between 1 and 65500. c is the match
character which may be any character in the standard character set. This parameter causes
only those records that do not have the character c at position n to be sorted. All the records
that do have the character c at position n are considered header records. They are included in
the output file in the same order they appeared in the input file. The group records are sorted
and written to the output file following the same header record they followed in the input
file. This parameter is mutually exclusive with the -h parameter.

-hn=c is the header record equal parameter. n is a number between 1 and 65500. c is the match character
which may be any character in the standard character set. This parameter causes only those
records with the character c at position n to be sorted. All the records that do not have the
character c at position n are considered group records. They are included in the output file
following the same header record they followed in the input file. The order of the group
records within one group does not change. This parameter is mutually exclusive with the -g
parameter.

-hn#c is the header record not equal parameter. n is a number between 1 and 65500. c is the match
character which may be any character in the standard character set. This parameter causes
only those records that do not have the character c at position n to be sorted. All the records
that have the character c at position n are considered group records. They are included in the
output file following the same header record they followed in the input file. The order of the

Page 53

group records within one group does not change. This parameter is mutually exclusive with
the -g parameter.

-j[r] is the share open mode parameter. The -j parameter causes the input file to be opened in
share read/write mode. The -jr parameter causes the input file to be opened in share read-
only mode.

-k	 is the key tag parameter. This parameter causes each output file record to contain only the
twelve character input file record position followed by the characters in the key for the sort
(sort-spec).

-m=n is the maximum length parameter. n is the maximum length of the longest record in the input
file. n is a number between 1 and 65500. If this parameter is not specified, the length of the
first record in the input file is assumed to be the maximum length for all records in the file. If
a record longer than the maximum length is encountered, an error occurs and the sort does
not function.

-o=filename is the options file parameter. filename is the name of a user-created file containing options. It is
useful when the number of options is too large to fit on one command line.

or	 is the logical or parameter. If the or parameter is placed between two -p parameters, they are
logically OR-ed together instead of logically AND-ed together. The precedence of all -p
operations is from left to right.

-pn[-n]eqc[c...]
-pn[-n]nec[c...]
-pn[-n]gtc[c...]

-pn[-n]gec[c...]
-pn[-n]ltc[c...]
-pn[-n]lec[c...] are the record select range parameters. n may be a one to four digit decimal number. c is

the match character. The record is included in the records output if the record contains a
character that is equal, not equal, greater than, greater than or equal, less than, or less than or
equal to (respectively) the match character at character position n. Otherwise, the record is
ignored. = may be used instead of eq. # may be used instead of ne. The optional n-n is used
to specify a range of character positions. If a range is specified, the number of match
characters specified should be the same as the number of positions in the range. If the
number of match characters specified is less than the number of positions in the range, it is
assumed that the unspecified match characters are blanks. If the number of match characters
specified is greater than the number of positions in the range, the extra match characters are
truncated. If more than one -p parameter is specified, they are logically AND-ed together. For
example: 

-p5eqxy
causes the records with a match character at the fifth character position equal to x or equal to
y to be selected.

-q	 is the alternate sort algorithm parameter. The file will be sorted using a key tag rather than
using the entire record. This parameter may be useful with large records and large files.
When this parameter is used, the size of the work file created by sort is significantly reduced
because only keys are written to the work file rather than entire records. Depending on the
instance, this parameter can significantly increase or decrease the time required for the sort to
run.

-r	 causes a descending sort to be done.
-s	 causes a stable sort to be done. If this parameter is specified, all records that have equal sort

keys are guaranteed to be in the same relative order as in the input file.
-t[=type] is the output file type option. type can be data, crlf, text, or std. The default is to create DB/C

standard text file (std). Under Windows, text is the equivalent to crlf; otherwise, text is the
equivalent to data. If type is omitted, text is assumed.

Page 54

-u	 is the unique record parameter. This parameter causes sort to output only the first record of a
group of records that have the same characters in the sort fields.

-w=filename is the work file parameter. If not specified, the default work file name is sort.wrk.
-x	 is the reverse selection parameter. This parameter causes those records that are selected by

the -p parameter to be excluded from the output file and those records not selected to be
sorted and written into the output file.

-y	 is the test end of file parameter. This parameter causes sort to fail if an end of file character is
encountered other than at the physical end of file.

The sort utility creates a work file in the current directory. The amount of space in bytes that must be
available for this file is:

1.6 * m * n
where m is the maximum record length plus 2 and n is the number of records to be sorted. If the -q
parameter is specified, m is the key length plus 12.
If the dbcdx.file.collate runtime property is specified, it is used to translate each record for the purpose of
ordering.
The sort utility returns a return code of zero if sort completes successfully. The return code is non-zero if
sort does not complete successfully. If the return code is non-zero and sort is running under chain
execution, then chain execution is aborted.

Page 55

tdcmp

The tdcmp utility is the compiler for terminal definition files. The compiler creates .tdb object files from
the input text files. The .tdb file to be used may be specified using the dbcdx.display.termdef runtime
property.
The format of the command line is:
tdcmp file1 [file2] [-cfg=filename]
file1 is the name of the source text file. If the extension of file1 is not specified, .tdf is assumed. This

file can be any text type file. The search path for file1 is controlled with the runtime property.
file2 is the name of the output .tdb file. If file2 is not specified, file1 with an extension of .tdb is the

default. If file2 is specified without an extension, .tdb is assumed. file2 is created in the current
directory.

-cfg=filename is the runtime property file.
Each record in the file consists of a function definition followed by an optional comment. The comment is
preceded by a semicolon. The function definition consists of a function name followed by an equal sign
(=) followed by a sequence of one or more characters that constitute the function. For example:

function-name=function ; comment
Blanks are ignored.
function is a sequence of one or more characters that is sent to the terminal. There are several character
sequences that have special meaning:

^c is a control character, where c is an upper or lower-case alphabetic character. For example, ^A
and ^a mean control-a (decimal 1).
^[is escape (decimal 27)
#n# is a one-byte value, where n is a one, two, or three-digit number. For example, #27# is the
escape character.
%v is for the functions that use parameters. v is one of h, v, t, b, l, r, a, n, (-b), (b-t), (-r) or (r-l).
\ is the forcing character. It allows special characters such as ^ # % \ ; and blank to be used
literally.

There are several different types of functions. Each of the following sections describes a group of
functions.

Flag Functions
	 no_defaults

color_erase
no_roll
scroll_erase
scroll_repos
ascii_control

The flag functions define capabilities of the terminal. These functions are not followed by an equal sign
(=).
The no_defaults function means that tdcmp is not to assume the default values for bell, enter_key,
escape_key, backspace_key and tab_key if these functions are not defined in the input file. The default
values for these functions are:

If bell is not specified, it defaults to ^g.
If enter_key is not specified, it defaults to ^m.
If escape_key is not specified, it defaults to ^[.
If backspace_key is not specified, it defaults to ^h.
If tab_key is not specified, it defaults to ^i.

Page 56

The color_erase function means that the terminal is capable of setting the background color during a
screen erase. If this function is not defined and an erase is performed with the background color being
other than black, then blanks are displayed to the terminal to achieve the correct background color.
The no_roll function means that the terminal will not roll up one line if a character is displayed in the
bottom right corner of the screen. If this function not defined, then DB/C DX will try to use the
disable_roll and enable_roll functions to prevent the screen from rolling up a line. Otherwise, DB/C DX
will prevent any characters from being displayed in that position.
The scroll_erase function means that the terminal is capable of handling erase functions within scroll
regions.
The scroll_repos function means the terminal provides cursor position recalculation within the scroll
region.
The ascii_control function tells DB/C DX to try to use ASCII control characters to perform simple cursor
movements instead of using the position_cursor sequence. This option may reduce character output.

Number Functions
lines
columns

The number functions define numeric capabilities of the terminal.
lines and columns functions specify the size of the screen. If lines is not specified, it defaults to 25. If
columns is not specified, it defaults to 80.

Terminal Initialization and Terminate String Functions
initialize
terminate

The terminal initialization and terminate string functions define character strings used to initialize and
reset the terminal.
initialize is a sequence of characters that is sent before the first characters are sent to the terminal.
terminate is a sequence of characters that is sent upon termination of a DB/C DX session.

Terminal Control String Functions
position_cursor scroll_right insert_line
position_cursor_horz enable_roll delete_line
position_cursor_vert disable_roll open_line
clear_screen erase_win close_line
clear_to_screen_end scroll_win_up cursor_underline
clear_to_line_end scroll_win_down cursor_block
scroll_region_tb scroll_win_left cursor_on
scroll_region_lr scroll_win_right cursor_off
scroll_up insert_char cursor_half
scroll_down delete_char special_nnn
scroll_left bell

The terminal control string functions define character strings to cause the terminal to perform the
corresponding function. Some of the functions support variables in the character strings. When those
functions are used to perform a terminal function, the variables are replaced with formatted numeric
values. The following functions support variables:

position_cursor may contain the variables h (horizontal) and v (vertical).
position_cursor_horz may contain the variable h (horizontal).
position_cursor_vert may contain the variable v (vertical).

scroll_region_tb may contain the variables t (top) and b (bottom). In addition, this function may contain
the variables (-b) and (b-t) where the parenthesis are part of the variable.
scroll_region_lr may contain the variables l (left) and r (right). In addition, this function may contain the
variables (-r) and (r-l) where the parenthesis are part of the variable.

Page 57

erase_win may contain the variables t (top), b (bottom), l (left), r (right), a (attribute) and n (number of
lines in window). In addition, this function may contain the variables (-b), (b-t), (-r) and (r-l), where the
parenthesis are part of the variable.
scroll_win_up may contain the variables t (top), b (bottom), l (left), r (right), a (attribute) and n (number
of lines to scroll up). In addition, this function may contain the variables (-b), (b-t), (-r) and (r-l), where
the parenthesis are part of the variable.
scroll_win_down may contain the variables t (top), b (bottom), l (left), r (right), a (attribute) and n
(number of lines to scroll down). In addition, this function may contain the variables (-b), (b-t), (-r) and 
(r-l), where the parenthesis are part of the variable.
scroll_win_left may contain the variables t (top), b (bottom), l (left), r (right), a (attribute) and n (number
of columns to scroll left). In addition, this function may contain the variables (-b), (b-t), (-r) and (r-l),
where the parenthesis are part of the variable.
scroll_win_right may contain the variables t (top), b (bottom), l (left), r (right), a (attribute) and n
(number of columns to scroll right). In addition, this function may contain the variables (-b), (b-t), (-r) and
(r-l), where the parenthesis are part of the variable.
Variables are preceded by the percent sign (%). The output formatting sequence comes after the variable.
The first character after the variable may be a plus sign (+). The character following this is a one-byte
value that is added to the variables before formatting. Following this is the actual output format
character. Several characters have special meaning:

d means one or more ASCII characters. 
2 means two ASCII characters. 
c means one byte binary. 
t means two ASCII characters with the following values:

0 = 0x20 0x20 
1 = 0x20 0x21 
 ... 
31 = 0x20 0x3F 
32 = 0x21 0x20 
 ... 
255 = 0x27 0x3F

z means two ASCII characters with the following values:
0 = 0x30 0x30 
1 = 0x30 0x31 
 ... 
15 = 0x30 0x3F 
16 = 0x31 0x30 
 ... 
255 = 0x3F 0x3F

n means zero or three ASCII characters. If the value is zero, then no characters are used. If the
value is non-zero, then the first two characters are the same as the z format and the third
character is 0x30.

The special_nnn is the special screen output mapping function. When the character with the value nnn in
decimal is sent to the output device, it is converted to the character sequence defined for that function.

Page 58

Terminal Attribute String Functions
reverse_on fg_red graphic_up_arrow
reverse_off fg_magenta graphic_down_arrow
underline_on fg_yellow graphic_left_arrow
underline_off fg_white graphic_right_arrow
blink_on fg_color_nnn graphic_horz_line
blink_off bg_black graphic_vert_line
bold_on bg_blue graphic_cross
bold_off bg_green graphic_upper_left_corner
dim_on bg_cyan graphic_upper_right_corner
dim_off bg_red graphic_lower_left_corner
auxport_on bg_magenta graphic_lower_right_corner
auxport_off bg_yellow graphic_up_tick
all_off bg_white graphic_down_tick
fg_black bg_color_nnn graphic_left_tick
fg_blue graphic_on graphic_right_tick
fg_green graphic_off graphic_nnn
fg_cyan

The terminal attribute string functions define character strings to set terminal attributes. The attributes
reverse, underline, blink, bold, dim, auxport, graphic have corresponding on/off functions. If an on
function is defined but it's corresponding off function is not, then the function all_off is used to turn off
the attribute. When the all_off function is used to turn off an attribute, it is assumed that all attributes
that were currently on were turned off and the colors were reset to the terminal defaults. This will cause
DB/C DX to restore the attributes and color resulting in additional terminal output. For this reason, it is
better to define the off functions for the attributes and not rely on the all_off function to turn off the
attribute.
fg_color_nnn and bg_color_nnn are the foreground and background numeric color mapping functions.
The value nnn is a decimal number from 0 to 255. When *color=nnn or *bgcolor=nnn is used, the
sequence fg_color_nnn or bg_color_nnn is sent to the output device. The colors *black, *blue, *green,
*cyan, *red, *magenta, *yellow, and *white correspond to the numeric values 0-7 respectively. The
colors combined with *boldon correspond to the numeric values 8-15 respectively. *boldon effects only
foreground colors.
The graphic characters typically depend on the graphic_on function to cause the terminal to use the
alternate character set. The graphic_off function reverses back to the normal character set. Some
terminals may be able to support graphic characters without having to use the graphic_on and
graphic_off functions. graphic_nnn is the numeric graphic character mapping function. The value nnn is
a decimal number from 0 to 43. The graphic characters *hln, *vln, *crs, *ulc, *urc, *llc, *lrc, *rtk, *dtk,
*ltk, and *utk correspond to the numeric values 0-10 respectively. The graphic characters combined with
*hdblon correspond to the numeric values 11-21 respectively. The graphic characters combined with
*vdblon correspond to the numeric values 22-32 respectively. The graphic characters combined with
*dblon or both *hdblon and *vdblon correspond to the numeric values 33-43 respectively.

Terminal Key String Functions
enter_key 
escape_key 
backspace_key 
tab_key 
backtab_key 
up_key 
down_key 
left_key 
right_key 
insert_key 
delete_key 
home_key 
end_key 

Page 59

page_up_key 
page_down_key 
fn_key where n is from 1 to 20 
shift_up_key 
shift_down_key 
shift_left_key 
shift_right_key 
shift_insert_key 
shift_delete_key 
shift_home_key 
shift_end_key 
shift_page_up_key 
shift_page_down_key 
shift_fn_key where n is from 1 to 20 
control_up_key 
control_down_key 
control_left_key 
control_right_key 
control_insert_key 
control_delete_key 
control_home_key 
control_end_key 
control_page_up_key 
control_page_down_key 
control_fn_key where n is from 1 to 20 
alt_up_key 
alt_down_key 
alt_left_key 
alt_right_key 
alt_insert_key 
alt_delete_key 
alt_home_key 
alt_end_key 
alt_page_up_key 
alt_page_down_key 
alt_fn_key where n is from 1 to 20 
alt_c_key where c is a character from a to z 
special_nnn_key

The terminal key string functions define the character sequences of the corresponding keystroke. This
character sequence is the set of characters that are sent when the corresponding key is pressed. The same
function may be defined more than once.
The special_nnn_key is the special keyboard input mapping function. Whenever the character sequence
specified for this function is encountered, it is converted to the value nnn in decimal before it is returned
as a single keystroke. The numeric value returned corresponds to the same values used by the setendkey
and getendkey statements.
Here is an example of a terminal definition file:

lines=#24# ; number of lines on screen 
columns=#80# ; number of columns on screen 
position_cursor=^[y%v+\ c%h+\ c ; pos cursor 
clear_screen=^[k ; *es 
clear_to_screen_end=^[j ; *ef 
clear_to_line_end=^[i ; *el 
bell=^g 
reverse_on=^[4a 
reverse_off=^[4@ 
graphic_on=^[<a 

Page 60

graphic_off=^[<@ 
graphic_horz_line=@ 
scroll_noerase 
special_130=^[<a@^[<@ ; graphics on, horz line, graphics off 
special_307_key=^af^m ; function key 7 
enter_key=#13# 
backspace_key=#8# 
escape_key=#27# 
tab_key=#9# 
bktab_key=^[2 
insert_key=^[p\ #8# 
delete_key=#127# 
home_key=^[h 
up_key=#11# 
down_key=#10# 
left_key=#30##8# 
right_key=#12# 
control_left_key=^[\ d 
control_right_key=^[\ c 
f1_key=^a@^m ; equivalent to #1#@#13# 
f2_key=^aa^m 
f3_key=#1#b#13# ; equivalent to ^ab^m 
f4_key=#1#c#13# 
f5_key=#1#d#13# 
f6_key=#1#e#13#

Page 61

	Runtime Properties
	DB/C Utilities
	aimdex
	build
	chain
	copy
	create
	delete
	dump
	edit
	encode
	exist
	filechk
	index
	library
	list
	reformat
	rename
	sort
	tdcmp

