
DB/C FS 101
Guide and Reference

January 2023

Copyright Portable Software Company 2023

Table of Contents
Chapter 1. Installation and Operation ...4

1.1 Introduction
1.2 Software
1.3 Installation of server and utilities software
1.4 Installation and setup of the Windows ODBC driver
1.5 Installation and setup of the unixODBC driver
1.6 Installation and setup of the JDBC driver
1.7 Running DB/C FS server
1.8 Running DB/C FS server as a Linux background process
1.9 Installing and running DB/C FS server as a Windows service
1.10 Considerations for using encryption
1.11 The DB/C FS server adminstration program
1.12 ODBC considerations
1.13 JDBC considerations
1.14 Installation of the Eclipse configuration editor

Chapter 2. Configuration Files ..14
2.1 General syntax
2.2 Configuration file
2.3 Name and password file
2.4 Data dictionary file

Chapter 3. SQL Syntax..26
3.1 Overview
3.2 SQL data manipulation statements
3.3 SQL data definition statements

Chapter 4. Java Client Programming Interface.......................................32
4.1 Overview
4.2 Connection

Page 2

4.3 File

Chapter 5. .NET Client Programming Interface41
5.1 Overview
5.2 Connection
5.3 File
5.4 Util
5.5 ConnectionException
5.6 FileException

Chapter 6. C API..51

Chapter 7. Programming Interface Error Codes.....................................59

Appendix A. Sample DBD File ..61

Appendix B. Log File Format ..64

Page 3

Chapter 1. Installation and Operation

1.1 Introduction
DB/C FS is a two tier file and SQL server software product. The DB/C FS file server capability provides the traditional DB/C file
access methods: sequential, random, indexed and associative indexed. The DB/C FS SQL server capability provides SQL access
methods. Both file and SQL access methods work with traditional DB/C files.

The DB/C FS distribution consists of both server software and client software.

The server software consists of the file server program and an administrative tool.

The client software consists of SQL drivers and other software interfaces. The SQL interfaces are an ODBC driver and a JDBC driver.
The ODBC driver is available for Microsoft Windows and for unixODBC on Linux. The JDBC driver works with Java applications
that use the JDBC interface. The client software interfaces that provide access to the file server capability are a Java DB/C FS file
access class library, C file access source code, and a .NET assembly. In addition, the current release of DB/C DX includes a file access
interface to the DB/C FS file server.

1.2 Software
The client software distributed with all versions of DB/C FS consists of:

setupodb32.exe the Windows 32 bit ODBC driver setup program
setupodb64.exe the Windows 64 bit ODBC driver setup program
setupodb the unixODBC driver setup program for Linux
fsodbc.a the unixODBC driver for Linux
fsodbcu.a the unixODBC driver DSN configuration support for Linux
dbcfsjdbc.jar the JDBC driver program
fs.jar the Java file interface package
fs.dll the .NET class library assembly
fsfileio.c the C file access interface source code file
fsfileio.h the C file access interface header include file
tcp.c an additional C interface source code file
tcp.h an additional C interface header include file

Page 4

The administrative programs are:

dbcfsadm.exe the server administration program for Windows
dbcfsadm the server administration program for Linux
fscfg.zip the DB/C FS Configuration Files Editor for Eclipse

The server software and file utilities distributed with the Windows version of DB/C FS consists of:

dbcfs.exe the file server program
dbcfsrun.exe file server auxiliary program (do not run directly)

The server software and file utilities distributed with the Linux version of DB/C FS consists of:

dbcfs the file server program
dbcfsrun file server auxiliary program (do not run directly)

1.3 Installation of server and utilities software
To install the server software and administrator program for Windows, copy dbcfs.exe, dbcfsrun.exe and dbcfsadm.exe into
a directory in the shell PATH.

To install the server software and administrator program for Linux, copy dbcfs, dbcfsrun and dbcfsadm into a directory that is
included in the shell PATH.

1.4 Installation and setup of the Windows ODBC driver
To install the ODBC client software in Windows, at the command prompt run the DB/C FS ODBC setup program named
setupodb.exe. This program steps you through the installation process. The setup program will copy several files into one or
more Windows system directories. The setup program adds the DB/C FS driver as an available ODBC driver. If an old DB/C FS
ODBC driver was installed previously, then you may want to uninstall it first using the “Add/Remove Programs” feature of
Windows prior to the installation. Once the new DB/C FS driver is installed, you will not have an option to just uninstall older DB/
C FS ODBC driver as both drivers must be uninstalled together. The DSN setup is the same as for other ODBC drivers.

Page 5

1.5 Installation and setup of the unixODBC driver
To install the unixODBC client software in a Linux, make sure unixODBC is installed. Linux packages managers like yum and
apt‑get may be used to install and update unixODBC. Many or all of the command line programs described in this section must be
run as a privileged user (e.g. root) which is typically done by using the sudo command as a prefix to the command line.
Change the current directory of the command line shell to the temporary distribution directory that contains the DB/C FS software.
Run the setupodb program provided with DB/C FS from the command line like this:

./setupodb
This program checks to see unixODBC is installed and then asks for the name of an existing directory which is where it will copy the
fsodbc.a and fsodbcu.a files to (the default is /usr/local/lib which may not be appropriate for your Linux distribution).
To configure the DB/C FS unixODBC driver, create the following file and name it fsdriver.tmp:

[dbcfs]
 Description = FS ODBC Driver
 Driver = /usr/local/lib/fsodbc.a
 Setup = /usr/local/lib/fsodbcu.a
 FileUsage = 1

Be sure to use the correct fully-qualified path name where you copied the two files to.
Run the following command to install the unixODBC driver:

odbcinst -i -d -f fsdriver.tmp

The DB/C FS driver is installed. You can delete the fsdriver.tmp file.
Here is an example of how to create and install a DSN. Create the following file and name it mydsn.tmp:

[mydsn]
 Description = Accounting System
 Driver = dbcfs
 Database = accounting
 Server = myserver.com
 UID =
 Password =
 ServerPort =
 LocalPort =
 Encryption = yes

Page 6

Replace the values in this example with your own. The values corresond with the values described in the ODBC Considerations
section of this document. Run the following command to install the DSN:

odbcinst -i -s -f mydsn.tmp

The DSN is installed. mydsn.tmp may be deleted.

1.6 Installation and setup of the JDBC driver
To install the JDBC client software in a Java environment, make the dbcfsjdbc.jar file available to the Java runtime.

1.7 Running DB/C FS server
The command line syntax to start the DB/C FS server is:

dbcfs config-file -fs=executable-file —g -x
where config-file, -g, -x and -fs are optional. If config-file is not specified, it defaults to dbcfs.cfg. If -g is specified in
combination with the logging feature being specified in the configuration file, then the server will rename any existing log file prior
to opening the specified log file in the configuration file. If -x is specified in combination with the logging feature being specified in
the configuration file, then the server will suspend logging changes to the log file in the specified in configuration file. The -fs
parameter is the alternate dbcfsrun name parameter which specifies a fully qualified alternate name of the dbcfsrun executable
file.

1.8 Running DB/C FS server as a Linux background process
When executing DB/C FS server (dbcfs) as a background process in Linux, specify the -y option to cause dbcfs to continue to run
even after the terminal connection used to start dbcfs is closed. This causes display of information that is normally sent to stdout to
be redirected to /dev/null. Here is what the command line might look like:

dbcfs config-file -y &

1.9 Installing and running DB/C FS server as a Windows service
The Windows DB/C FS server may be installed as a service in Windows. These additional command line options provide for
installation and removal of DB/C FS server as a service:

-display=service-display-name is used with the -service parameter and defaults to DB/C FS Service.

Page 7

-install is the install parameter. This parameter causes DB/C FS to be installed as a Windows service in the stopped state.

-password=password is the login password parameter. It is optionally used with the -user parameter.

-service=service-name is useful if you have 2 licenses of FS and want to run both concurrently on the same system.
The default value is DbcfsService and must be different for the additional instances of the DB/C FS server services.
The service display name should also be changed using the -display option.

-start is the start parameter which can also be accomplished from the Services Control Panel or by restarting the
computer. This option may be used in conjunction with the -install parameter or by itself to start a stopped service.

-stop is the stop parameter which can also be accomplished from the Services Control Panel and from the DB/C FS file
server administration program.

-uninstall is the uninstall parameter which also performs an implicit -stop if necessary.

-user=login-user-name is used to assign a user name to the service. The login-user-name should be in the format of
domain-name\user-name. If this parameter is not specified, then the LocalSystem account will be used. This
can also be accomplished with the Services Control Panel prior to starting the service. A user name may need
to be defined if required network drives or drive mappings are not available with the LocalSystem account.
If the user name requires a password, the -password parameter must be specified.

-verbose causes various success or failure messages to be displayed.

The Services Control Panel can be used to start, stop and check the running status of the service. If an error occurs which causes
dbcfs to stop execution, the error will usually be logged in the Application Log which can be viewed with the Event Viewer.

1.10 Considerations for using encryption
Encryption for communications between the FS server and client software uses industry standard SSL key managment. A key file
containing a certificate and a private key for the certificate need to be generated and stored in a key file.

Here is an example of the commands to make the key file on Linux (substitute your own location and company name in the string
following -subj):

openssl genrsa -out selfsigned.key 4096

Page 8

 openssl req -new -key selfsigned.key -out selfsigned.csr -sha256 \
 -subj "/C=US/ST=Wyoming/L=SelfSigned/O=Portable Software/OU=Org/CN=localhost"

 openssl x509 -req -days 9000 -in selfsigned.csr -signkey selfsigned.key -out selfsigned.crt

 cat selfsigned.crt selfsigned.key > dbcserver.crt

Here is an example of the Power Shell commands to make the key file on Windows (substitute your own location and company
name in the string following -subj):

 openssl genrsa -out selfsigned.key 2048 // 4096 is an option

 openssl req -new -key selfsigned.key -out selfsigned.csr -sha256
 -subj "/C=US/ST=Wyoming/L=SelfSigned/O=Portable Software/OU=Org/CN=localhost"

 openssl x509 -req -days 9000 -in selfsigned.csr -signkey selfsigned.key -out selfsigned.crt

 Get-Content .\selfsigned.crt, .\selfsigned.key | dbcserver.crt

The key file (dbcserver.crt in the examples) can have any name, but dbcserver.crt is the default name used by DB/C FS. By
default, that file should be located in the current directory that is effective with the server starts. The file name and location can be
modified with the certificatefilename runtime property.

1.11 The DB/C FS server adminstration program
The DB/C FS server administration program (dbcfsadm) provides for the display a list of the users that are connected, shut down
the DB/C FS server, control logging, and remote execution of utility commands. The server administration program is run from the
command line. Here is a list of command line options:

dbcfsadm servername -port=n -noencrypt -p=password -s -u -g -l -x -c="utility command line" -?

All command line parameters are optional.

servername specifies the host machine where the DB/C FS server is running. The default is the local machine.

-port overrides the default TCP/IP port number.

-noencrypt specifies that encryption is not used.

-p specifies the password for administrative operations if required.

Page 9

-s causes the server task is stopped. The password parameter is necessary if the adminpassword property is specified
in the server configuration file.

-u causes a list of users that are connected with the server to be displayed displayed. The password parameter is
necessary if showpassword property is specified in the server configuration file. The -u and -s options are
mutually exclusive.

-g causes the DB/C FS server task will to rename the log file. In addition, it will cause the DB/C FS server to log the
modified records to the log file. This option is valid only if the logging feature is specified in the configuration
file. The password parameter is required if the adminpassword property is specified in the configuration file.

-l causes the server to start logging changes to the log file. This option is similar to the -g option without the renaming.
This option is valid only if the logging feature is specified in the configuration file. The password parameter is
necessary only if the corresponding property is specified in the server configuration file.

-x causes the server to stop logging changes to the log file. This option is valid only if the logging feature is specified
in the configuration file. The password parameter is necessary if the adminpassword property is specified in the
server configuration file.

-c causes the server to execute the utility command using the specified command line arguments. The password parameter
is required if the adminpassword property is specified in the server configuration file.

-? causes a help message will appear.

1.12 ODBC considerations
The DB/C FS ODBC client software supports 3 types of connections. The most common method is connecting with a Data Source
Name (DSN) using either a User DSN or a System DSN. The other methods are to use a File DSN and to use a DSN-less connection.

To set up a User or System DSN, you can use the Windows ODBC Administrator to add a new DSN, or you can use the method
specified in 1.4 to set up a DSN in LINUX. Here is the meaning of the parameters specified for a DSN:

Data Source Name:

The Data Source Name is the ODBC DSN name that is used by an application to connect to the associated driver. The DSN is also
the name of the data dictionary file that is available to the DB/C FS server (see Data Dictionary File). The data dictionary file name

Page 10

may be case sensitive depending on the server. The name of the data dictionary file can be overridden using the Database Name
entry. This field is required.

Description:

The Description is for your information only and is not used in the connection.

Database Name:

The Database Name specifies the name of the data dictionary file that is available to the DB/C FS server (see Data Dictionary File). If
this field is not specified, then the value of Data Source Name is used.

Default User ID:

The Default User ID specifies the default user id name if the UID is not specified on the connection. If this field is not specified and
the UID is not specified on the connection, then a username of DEFAULTUSER is used.

Default Password:

The Default Password specifies the default password that will be used if a password was not specified on the connection. If this field
is not specified and the password is not specified on the connection, then a password of PASSWORD is used.

Server Name:

The Server Name is the DNS name of the computer or its IP address. This field is required.

Server Port Number:

The Server Port Number specifies the port number to use when connecting to the server. If this field is not specified, then port
number 9584 is used for non-encrypted connections and port number 9585 is used for encrypted connections. This field must be
specified if the nport or the eport configuration options are specified in the server configuration file.

 Local Port Number:

The Local Port Number defaults to a dynamic value that is passed to the server. If the client has a firewall and needs to specify a
specific port for the server to connect back to the client, then this option should be set to the appropriate port number. If the sport
configuration option is specified in the server configuration file, then the Local Port Number may be set to 0 (zero). This will cause
the secondary connection to be made in the direction of the server and opening a port on the client’s firewall will not be required.

 Encryption:

Page 11

The Encryption check box determines if the connection between the client and server is encrypted.

To set up a File DSN, you can use the ODBC Administrator to add a new File DSN. Select the DB/C FS driver and a dialog will
prompt you in the same manner as the above User or System DSN, but the Database field is a required field. Upon successful
completion a file is created by the ODBC Administrator that contains two or more of the ODBC driver specific keywords in the
[ODBC] section, like this:

Database = data-dictionary-file
UID = user-name
Password = password
Server = server-address
ServerPort = port-number
LocalPort = port-number
Encryption = Yes or No

A DSN-less connection can be created by specifying the File DSN keywords as above in combination with the Driver keyword. The
minimum required keywords are Database and Server.

The File DSN keywords can also be used in conjunction with a User or System DSN connection to override the User or System DSN
values.

Certain ODBC client software programs (e.g.Microsoft Access) do not provide a user name and password when connecting with the
server. The user name defaults to the value of the Default User ID field previously described. If the Default User ID is not specified,
the value DEFAULTUSER is used. The password defaults to the value of the Default Password field previously described. If the
Default Password is not specified, the value PASSWORD is used. So for these applications, if you have not specified a Default User
ID value and Default Password, you will need to have an entry in your password file like this:

 name = DEFAULTUSER
 password = PASSWORD
 access = access-code

1.13 JDBC considerations
The DB/C FS JDBC protocol is fs. The JDBC driver class name is com.dbcswc.fs.jdbc.Driver.

Page 12

The URL specification for the connection in one of these two formats:
jdbc:fs:server/database
jdbc:fs:server:port/database

One or more optional attribute values maybe appended to the end of the URL specification in the format of
";attribute-name=attibute-value"

where the following attributes are supported:
localport=port-number
encryption=on or off

For a description of these attributes, see the ODBC discussion of the same name.

1.14 Installation of the Eclipse configuration editor
The Eclipse Configuration Editor plug-in provides a way to create and modify the configuration, password, and database definition
files for DB/C FS within the Eclipse Integrated Development Environment (IDE). Eclipse is an open source IDE that works on
Window, Mac OS X, LINUX and other operating systems. When any of the DB/C FS configuration, password, or database definition
files are modified and saved within the IDE, the output format is as described in the next chapter.

The first step to using the FS Configuration Editor and Eclipse is to install Eclipse. Eclipse may be downloaded from ww.eclipse.org.
Install Eclipse according to the instructions for your operating system.

You can install the FS Configuration Editor after you have installed Eclipse. The FS Configuration Editor is an Eclipse Feature. It is
installed by using the Eclipse Update Manager. The FS Configuration Editor is distributed in the fscfg.zip file. Copy the zip file into
a directory of your choice. The Feature can then be installed using the standard Install Features menu items of Eclipse by specifying
the fscfg.zip file as an Update Site and then completing the installation normally.

There are three editors in the Eclipse plug-in: the Configuration Editor, the Password Editor and the Database Definition Editor. The
action of these editors is self-explanatory. The meanings on the pages and fields specified in these editors is described in the next
chapter.

Page 13

Chapter 2. Configuration Files

2.1 General syntax
TThe DB/C FS configuration file, the DB/C FS password file and the DB/C FS database definition files are XML text files. The
syntax of these files allows XML Declaration and Document Type Definitions (DTD) at the beginning of the file, but these elements
are ignored. Sections of the configuration and data dictionary files may be commented. Comments start with <!-- and end with
-->. When using DDL commands or the DB/C FS Configuration Editor plug-in for Eclipse, the comments, DTDs, and the XML
Declaration will be lost when the file is saved to disk.

Here is a list of characters that must are illegal in XML and must be replaced by entity references:

< is the less than character (<)
> is the greater than character (>)
& is the ampersand character (&)
' is the apostrophe character (')
" is the quotation mark (")

For example, to add the following column description to a DBD file: “Customer’s zip code & address”, the XML would look like this:
<d>Customer's zip code & address</d>

2.2 Configuration file
The default DB/C FS configuration file name is dbcfs.cfg. This name may be overridden when the server is started or when the
server is installed as a Windows service. If the default name is used or if no directory is specified in the override file name, then
when the DB/C FS server is started, it searches for the configuration file in the current directory. It is recommended to specify the
full path name of file names when installing DB/C FS as a Windows service.

The configuration file must contain a <dbcfscfg> root element which contains one or more of the following child elements. Unless
otherwise noted, all elements are optional and may only be specified once.

<licensekey> 18-digit-key </licensekey>
The license key element is required. The number of concurrent users allowed to connect with the DB/C FS server is encoded in the
license key.

Page 14

<passwordfile> filename </passwordfile>
The password file element defines the file containing user names and passwords. If not specified, the default name of this file is
dbcfspwd.cfg.

<nport> port-number </nport>
The nport element defines the non-encrypted port number. It is used to specify the TCP/IP port number used by the server to
perform non-encrypted communication with the clients. This element is typically required only when conflicting applications or
firewall software require DB/C FS to use a different port. The default non-encrypted connection port number is 9584.

<eport> port-number </eport>
The eport element defines the encrypted port number. It is used to specify the TCP/IP port number used by the server to perform
encrypted communications with clients. This element is typically required only when conflicting applications or firewall software
require DB/C FS to use a different port. The default encrypted port is 9585.

<sport> port-number </sport>
The sport element defines the starting port number of a range of secondary port numbers. It is used to specify the TCP/IP port
numbers used by the server to accept secondary connections from the clients. This will cause participating client connections to have
both TCP/IP connections to be directed towards the server, instead of the default secondary connection being directed back towards
the client. In order for the client to participate in the single direction connections, the client application must specify the local port
parameter as 0 (zero). It is possible to have some of the clients using the sport feature and others not using the sport feature. The
sport element is typically required if there is a problem with the secondary connection and a client’s firewall. The range of port
numbers is from sport to (sport + user license count – 1), regardless of the number of clients using the sport feature. Be sure the
range does not conflict with the port numbers specified by nport or eport, other applications or firewall software.

<certificatefilename> filename </certificatefilename>
The certificate file name element defines the file that contains the private key and self-signed certificate for encrypting
communications with the client. If not specified, the default name of this file is dbcserver.crt.

<dbdpath>
 <dir> directory </dir> (may be repeated, at least one required)

</dbdpath>
The database definition file (DBD file) lookup path parameter defines the directory or directories that are searched to find DBD files.

<volume> (may be repeated)
<name> volume </name> (required)

Page 15

<dir> directory </dir> (may be repeated, at least one required)
</volume>

The volume element specifies the directory or directories that are searched to open a file when the :volume specification is contained
in a filename in a table definition in the DBD file. This element may be specified multiple times. It may also be overridden by an
operand in the DBD file.

<filepath>
<dir> directory </dir> (may be repeated, at least one required)

</filepath>
The data and index file lookup path element specifies the directory or directories that are searched to open a file when there is
no :volume specification or directory specification in a file name in the database definition. A file that is to be created is created in the
first directory specification if the preppath element is not defined. This parameter may be overridden by an operand in the DBD file.

<preppath>
<dir> directory </dir> (may be repeated, at least one required)

</preppath>
The prepare data and index file path element specifies the directory where a file is created when there is no :volume specification or
the file does not exist in the path specified by the filepath element. The default is the first directory specified by the filepath element.

<workdir> directory </workdir>
The work file directory element specifies the directory in which temporary work files are created.

<namecase> upper-or-lower </namecase>
The file name case element specifies the case translation for all file names. The upper-or-lower value is either upper or lower. If
upper is specified, then the entire filename (prefix and suffix) is converted to upper case. If lower is specified, then the entire
filename is converted to lower case. This feature is only used in conjunction with file access.

<pathcase> upper-or-lower </pathcase>
The path name case element specifies the case translation for the directory portion of all file names. The upper-or-lower value has the
same values and semantics as for namecase.

<extcase> upper </extcase>

Page 16

The filename extension case element specifies the case for file suffixes that are not specified in the file access open operation. If this
operand is not specified, the default extension is lower -case. If it is specified, the default extension is upper case. This feature is
only used in conjunction with file access.

<casemap> translation-specification-or-filename </casemap>
The aimdex file case translation table element specifies a semicolon delimited list of translation specifications or the file name of a
256 byte binary file that contains the case translation table. This parameter is typically only required with case insensitive aimdex
files (non-distinct) using international characters. Each translation specification is in the form of either nnn:nnn or nnn-nnn:nnn
where nnn is the decimal value of a character. The value before the colon is the ‘translate from’ character or the start of the ‘translate
from’ character range and the character after the colon is the ‘translate to’ character or the first character in the ‘translate to’ range.
Multiple translation specifications are separated using a semicolon and the default of converting a-z to A-Z would be specified as
97-122:65. If the specified value is not a valid translation list, then the operand is assumed to be a file name of a 256 byte file, where
the byte offset value contains the value to translate to, where zero is the first byte. In the previous translation example, byte offset 97
would contain the value 65, byte offset 98 would contain the value 66, etc.

<collatemap> translation-specification-or-filename </collatemap>
The collating sequence element specifies a semicolon delimited list of translation specifications or the file name of a 256 byte binary
file that contains the collating sequence table. Each translation specification is in the form of either nnn:nnn or nnn-nnn:nnn where
nnn is the decimal value of a character. The value before the colon is the ‘translate from’ character or the start of the ‘translate from’
character range and the character after the colon is the ‘translate to’ character or the first character in the ‘translate to’ range.
Multiple translation specifications are separated using a semicolon and the default ASCII table would be specified as 0-255:0. To
have upper case characters have equal collating sequence as their lower case counterparts, both 97-122:65 and 65-90:97 would work
though they are not the same as compared to the characters with the value 91-96. If the specified value is not a valid translation list,
then the parameter is assumed to be a file name of a 256 byte file. Each byte in the file corresponds with a character in the character
set. The first byte of the file corresponds with the character whose value is zero, the second byte corresponds with the character
whose value is one, and so on. The value of each byte specifies the collating sequence of the character set. Thus the character which
has a value zero in the corresponding byte in the file is the lowest character in the collating sequence, etc.

<nodigitcompression/>
The suppress digit compression characters element specifies that the characters between decimal value 128 and 248, inclusive, are
not considered compression characters, but are considered to be part of the text character set that is used in each data record.

Page 17

<memalloc> nnnn </memalloc>
The total work area memory allocation element specifies the number of kilobytes of memory that is allocated for the work area of the
DB/C FS server. The default value is 256.

<memresult> nnnn </memresult>
The result size work area element specifies the number of kilobytes of memory from the work area that is used to contain a SELECT
result set. If the result set will not fit into this area, it will be stored in a temporary file. If multiple SELECT statements will be active
concurrently, then be sure that the memory allocated as a result of the memalloc element is large enough to contain all of the result
sets.

<adminpassword> password </adminpassword>
This element specifies the password that must be specified by dbcfsadm to shut down the DB/C FS server.

<showpassword> password </showpassword>
This element specifies the password that must be specified by dbcfsadm to show the currently connected users.

<compat> compatability </compat>
The compatability element specifies file name conversion method. Valid values for compatability are dos, rms, rmsx, and rmsy.
See the DB/C DX documentation for more information.

<encryption> encryption </encryption>
This element specifies the availability of encypted communications with the client. Valid values for encryption are on, off, or only.
The on value specifies that encryption is the default mode of operation, but unencrypted communication will occur if the client
requests it. off specifies that only unencrypted communication is available. only specifies that only encrypted communication is
available. The default is on.

 <noexclusivesupport/>
This element specifies that exclusive open support is not available. This element is ignored by the Windows version of DB/C FS.

<excloffset> nnnn </excloffset>
This element specifies the file offset that will be used to implement the exclusive open operation. This element is ignored by the
Windows version of DB/C FS. The default value is operating system dependent, and should usually not be changed.

<recoffset> nnnn </recoffset>
This element specifies the file offset that will be used to implement record locking. The default value is operating system dependent,
and should usually not be changed.

Page 18

<fileoffset> nnnn </fileoffset>
This element specifies the file offset that will be used to implement file locking. The default value is operating system dependent,
and should usually not be changed.

<deletelock> lock-specification </deletelock>
This element specifies the granularity of the locks that are performed during the SQL delete operation. Valid values for
lock‑specification are record, file and off. The default value is record which causes each record read from the text file to be
locked and then released upon the record deletion or a failed condition comparison. In addition the text file will be locked if an
index is used to find the record and will be locked again when deleting any keys from the index files. If the element is specified as
file, then a file lock will be issued for the entire execution of the delete statement. The value file reduces system overhead as only
one file lock is performed on the text file and additional file locks will not be required during index access or modification. But at the
same time, using the value of file may increase the wait time of other applications to gain access to the file. The value off turns off
any record locks, but file locks will be performed on the text file to access and modify the index similar to the value of record. The
use of off is at the discretion of the user and the integrity of the records is at risk if multiple users are accessing records
simultaneously.

<updatelock> lock-specification </updatelock>
This element specifies the granularity of the locks that are performed during a SQL update. The valid values for lock‑specification are
record, file and off. The default value is record which causes each record read from the text file to be locked and then released
upon the record update or a failed condition comparison. In addition the text file will be locked if an index is used to find the record
and will be locked again when updating any keys from the index files. If the element is specified as file, then a file lock will be
issued for the entire execution of the update statement. The value file reduces system over head as only one file lock is performed
on the text file and additional file locks will not be required during index access or modification. But at the same time, using the
value of file may increase the wait time of other applications to gain access to the file. The value off turns off any record locks, but
file locks will be performed on the text file to access and modify the index similar to the value of record. The use of off is at the
discretion of the user and the integrity of the records is at risk if multiple users are accessing the records simultaneously.

The <logchanges> element of the configuration file is used to specify logging options. This element contains these child elements:

<logchanges>
<allfiles/> (either allfiles or one or more file required)
<logfile> filename </logfile> (required)
<file> filename or pattern </file> (pattern may contain * and/or ?)
<lognames> off or on </lognames>

Page 19

 <logopenclose> off or on </logopenclose>
<logtimestamp> off or on </logtimestamp>
<logusername> off or on </logusername>

</logchanges>
The allfiles element specifies that changes to all files should be logged. If changes to only certain files are to be logged, then the
logfile element should be used instead. One of either allfiles or logfile must be specified in the <logchanges> section. The format
of the log file is specified in Appendix B.

The lognames element specifies if the logfile’s file modification entries will contain the file name. Setting the value to on will cause
the logfile to be marginally larger, but doesn’t require tracking the file handle from the open to the associated file modification
entries. The default is off.

The log open/close element specifies whether or not file open and close operations are logged. The default is on.

The log time stamp element specifies that all entries in the log file will have a 16 digit time stamp. The default is off. The format of
the time stamp is:

yyyymmddhhmmsspp
where yyyymmdd is the date, hhmmsspp is the time. In some runtime environments, pp is hundredths of a second. In other
environments, pp is always 00.

The log user name element specifies that each entry in the log file will have a user name associated with it. The default is off.

2.3 Name and password file
The default DB/C FS name and password file name is dbcfspwd.cfg. This name may be overridden in the configuration file. If the
default name is used or if no directory is specified in the override file name, then when the server is started, it searches for the
password file in the same manner that it searches for the configuration file.

The name and password file must contain a <dbcfspwd> root element with one or more child <user> elements.

Each <user> element consists of the name, password and access elements. The syntax is:
<user> (may be repeated, at least one required)

<name> username </name> (required)
<password> password </password> (required)
<access> access code </access> (may be repeated, at least one required)

Page 20

</user>
The name element defines the name of a user. The user name may be up to 20 characters long. It is not case sensitive.

The password element defines the password associated with the preceding user name. The password may be up to 20 characters
long. It is not case sensitive.

The access codes element defines an access code that associated with a particular user name. Multiple access code elements may be
declared for a single user. Access codes are 1 to 20 character identifiers. Access codes are not case sensitive.

2.4 Data dictionary file
The database name specified in the connection or initialization operation is converted to a database dictionary definition file name
(DBD file) by appending a .dbd extension. Note that in Linux, the name of the DBD file is case sensitive, whereas in Windows it is
not. In ODBC drivers, the database name may also be referred to as the data source name (DSN). If the dbdpath element was
specified in the DB/C FS configuration file, the server searches for the DBD file in each of the directories specified by the dbdpath
operand. If the dbdpath operand was not specified, then the server searches for the data dictionary file in the current directory. The
dbdpath element should be specified if the server is run as a Windows NT service.

The DBD must contain a <dbcfsdbd> root element and one or more of the following child elements. There are two groups of
elements in a DBD file. The first group of elements consists of access and general information operands. The second group of
elements defines the SQL database.

The first group of elements consists of the following settings:

<access> access code </access> (required)
<volume> (may be repeated)

<name> volume </name> (required)
<dir> directory </dir> (may be repeated, at least one required)

</volume>
<filepath>

<dir> directory </dir> (may be repeated, at least one required)
</filepath>

The access element defines the access code associated with this database. This element is required for both SQL and file access
connections and is the only element required for file access connections. One of the access codes of a user attempting to use this data
source must match this access code.

Page 21

The volume element specifies the directory or directories that are searched to open a file when the :volume specification is contained
in a filename in a table definition in the DBD file. This element may be specified multiple times. It overrides any setting in the
configuration file that specifies the same volume.

The filepath element specifies the directory or directories that are searched to open a file when there is no :volume specification in a
filename in the database definition. This parameter overrides the filepath element specified in the configuration file.

The second group of elements optionally defines one or more SQL tables. These elements are ignored for file access connections.
Each table is defined within a <table> element which contains these child elements:

<table>
<name> tablename </name> (required)
<description> description </description>
<textfile> filename </textfile> (required)
<textfiletype> standard or data or crlf or text </textfiletype>
<indexfile> filename </indexfile>
<filter>

<column> name </column> (required)
<value> value </value> (required)

</filter>
<fixedlength> nnnnn </fixedlength> (optional)
<variablelength> nnnnn </variablelength>
<compressed/>
<readonly/>

<table>
The name element is required, and contains the table’s name. The name may contain the question mark (?) character which will
enable table templating. This feature requires the same number of question marks to be present in the corresponding textfile and
indexfile elements. This is useful if the text file name and index file names contain something like a company number, where it is not
feasible to create multiple table element entries. This allows using one table element against multiple data files. If the question
marks are contained to just the file name portion, then the tables will be returned when using wild cards with table or column
information functions such as ODBC’s SQLTables and SQLColumns. If any of the question marks are contained within the file path
or volume, then wild cards are not supported and the full table name must be specified on the query to return any information in
regards to the two previous functions.

Page 22

The description element is a comment field.

The textfile element specifies the filename of the text file of this table. The file extension must be specified.

The textfiletype element specifies the type of text file. Values for type are: standard, data, crlf and text. standard means the
text file is a DB/C standard text file. data means the file is a portable text file (linefeed is the end of record character). crlf means
the file is a portable text file (carriage return, linefeed are the end of record characters). text means the file is a non-portable,
operating system dependent text file. This operand is optional for DB/C type files, but is necessary for data, crlf, and text type
files that are empty or contain only deleted records. Specifying this parameter may reduce the time required to open the text file.

The indexfile element specifies the filename of an index of the textfile associated with this table. This file may be either an ISAM or
an AIM index. The extension must be specified. The ordering of the index files has an effect on the search engine when it is trying to
select which index to use. Generally, if it is trying to decide between two ISAM index files, which appear to be equal, it will select
the first listed. Additionally, the search engine favors ISAM index files over AIM index files. This can be altered by listing the AIM
index files before the ISAM index files. In this case, if all of the search conditions are with the equality operator, the AIM index keys
cover all of the search conditions and the search engine cannot find a non-duplicate ISAM index file with an exact match, then the
AIM index will be used. The only caution to using the AIM index before ISAM index feature is if none of the search columns satisfy
the aimdexed read criteria of a X-type or F-type search. In this case, the AIM index search will fail and the search will revert to
processing the file sequentially.

The filter element specifies a column filter for this table. Only those records that have the column specified by name that have the
value specified by value are considered to be part of the table. This parameter also implies that the file is read only.

The fixedlength element specifies that all of the records in the file are the same length and are not compressed. If nnnnn is not
specified, the file is read when it is opened and the length of the first record defines the record length. If nnnnn is specified, it defines
the record length. In either case, an error will occur if any record is encountered that is a different length. Specifying nnnnn may
reduce the time required to open the file.

The variablelength element specifies the maximum record length for files containing records of various lengths. This parameter
prohibits the use of SQL update statement.

The compressed element means that the file is a DB/C type compressed file. This parameter prohibits the use of the SQL update
statement.

The readonly element means that the file will be read only (i.e. The SQL INSERT, UPDATE, DELETE and SELECT FOR UPDATE
statements will fail). The readonly element may be required for files that are stored on read only media.

Page 23

Each table can contain one or more column, child (<c>) elements. Each column <c> element can have several child elements which
describe the column. These elements are:

<c>
<n> name </n> (required)
<t> data type </t> (required)
<p> record position </p>
<d> description </d>
<l> label </l>
<nonnegative/>

</c>
The n element defines the column name. It is required. The name value must be 1 to 32 characters; the first character must be
alphabetic and the following characters must be alphanumeric or the underscore (_) character.

The t element defines the data type of the column. It is required. The value of data type must be one of these:

characters (n)
numeric (n)
numeric (n,m)
numeric (n.m)
date (date-specification)
time (time-specification)
timestamp (timestamp-specification)

char is synonymous with character. num is synonymous with numeric.

For the character data type, n is the number of characters in the character column.

For the numeric data type specified with (n), the column is integral and n is the maximum number of digits allowed in the column.
For the numeric data type specified with (n,m), n is the maximum number of digits (including digits to the right of the decimal
point) and m is the number of digits to the right of the decimal point. For example 1234 would be represented by numeric(4) or
numeric(4,0) and 1234567.89 would be represented by numeric(9,2). For the numeric data type specified with (n.m), n is
the number of digits to the left of the decimal point, and m is the number of digits to the right of the decimal point. For example
12345.678 would be represented by numeric(5.3).

Page 24

For the date data type, the date-specification may be of any combination of YYYY, YY, MM, DD, slash (/), hyphen (-), period (.), colon
(:). For example, date(YYYYMMDD) and date(YY/MM/DD).

For the time data type, the time-specification may be of any combination of HH, MM, SS, one or more Fs (fraction), slash (/), hyphen (-),
period (.), colon (:). For example time(HHMM) and time(HH:MM:SS.FFF).

For the timestamp type, the timestamp-specification may be of any combination of YYYY, YY, MM, DD, HH, MM, SS,one or more Fs, slash
(/), hyphen (-), period (.), colon (:). The MM is assumed to represent months unless it’s the first occurrence after HH; therefore
minutes can not be specified before hours. For example timestamp(YYYYMMDDHHMMSS) and timestamp(YYYYMMDDHHMMSSFF).

The position element (p) is optional. It specifies the starting position of the column in the record. This parameter is only necessary
when a column is not contiguous with the previous column. The first position in a record is position 1.

The description element (d) is optional. It contains a description of the column.

The label element (l) is optional. It contains a label of the column that may be beneficial to the display of column headers in some
applications. The label can be a maximum of 32 characters.

The nonnegative element is optional. It is useful for nonnegative numeric columns that make up an index key. This enables DB/C
FS to use the index with that column, which may not be an option on certain comparison predicates against a numeric column
containing negatives.

See Appendix A for a sample DBD file.

Page 25

Chapter 3. SQL Syntax

3.1 Overview
DB/C FS supports a subset of ANSI/ISO Standard SQL. DB/C FS supports the four basic SQL data manipulation statements:
SELECT, INSERT, DELETE and UPDATE. In addition, DB/C FS supports the following SQL data definition statements: ALTER,
CREATE and DROP.

Cursors are supported. Positioned DELETE and UPDATE are supported. Fetch is supported for obtaining rows of a result set. The
cursor support is accomplished outside of the syntax of the SELECT, DELETE and UPDATE statements. Rather it is accomplished
with additional parameters and functions in the protocol used to communicate between the client and the server. Client software
varies in its approach to cursors. Some client software adds syntax to the SQL statements to support cursors. Other client software
implements cursor specification outside of the SQL statement syntax.

3.2 SQL data manipulation statements
The specific SQL data manipulation statements (DML) that DB/C FS supports are summarized in the following. Those elements
enclosed in square brackets ([]) are optional. Elements separated by the vertical bar (|) mean that one or the other is allowed.

SELECT [DISTINCT] select-list FROM table-list [WHERE search-condition] [ORDER BY sort-spec-list]
[[GROUP BY sort-spec-list] [HAVING having-search-condition]] |
[[FOR READ ONLY | FOR UPDATE [OF column-list] [NOWAIT]]]

UPDATE table-name SET column-set-value-list [WHERE search-condition]

DELETE FROM table-name [WHERE search-condition]

INSERT [INTO] table-name (column-list) VALUES (value-list)

select-list is:
* | column-list

where * refers to all columns of all tables of this query.

column-list is a comma delimited list of one or more of these:
column-spec [[AS] column-label]
table-name .*

Page 26

table-label .*
string-literal [[AS] column-label]
result-expression [[AS] column-label]

column-spec is:
column-name
table-name.column-name
table-label.column-name

table-name.* and table-label.* refer to all columns of the referenced table.

A result-expression is in algebraic form that contains constants, arithmetic operators, functions and columns. Functions consist of set
functions, string functions, and CAST expressions.

Here is the list of set functions:
COUNT(*)
COUNT([ALL | DISTINCT] qualified-column-name)
AVG([ALL | DISTINCT] qualified-column-name)
MAX([ALL | DISTINCT] qualified-column-name)
MIN([ALL | DISTINCT] qualified-column-name)
SUM([ALL | DISTINCT] qualified-column-name)

In each of the set functions, ALL is the default. If DISTINCT is specified more than once in any expression in a SELECT statement, it
must refer to the same column in all of the entries in this select statement that have DISTINCT specified.

The string value functions are:
UPPER(value-expression)
LOWER(value-expression)
value-expression || value-expression
SUBSTRING(value-expression FROM start [FOR length])
TRIM ([LEADING | TRAILING | BOTH] [char-expression] FROM char-expression)

Note that || is the concatenate operator.

The CAST function is:
CAST(value-expression AS datatype)

Page 27

value-expression is:
column-name
table-name.column-name
table-label.column-name
string-literal
string value function

table-list is:
table-spec [join-operator table-spec [ON join-search] . . .]

table-spec is:
table-name [[AS] table-label]

join-operator is one of:
,
[INNER] JOIN
LEFT OUTER JOIN

The comma operator and INNER JOIN are the same.

The ON search-condition clause is essentially the same as WHERE, except that it can only contain operators and columns from the two
tables being joined.

search-condition is an expression in algebraic form that contains constants, operators, string functions and columns from the table or
tables specified in the statement. The operators are:

comparative operators: = <> < > <= >= LIKE BETWEEN IN
logical operators: AND OR NOT
arithmetic operators: + - * /

column-set-value-list is one or more of the following comma separated values:
column-name = value

sort-spec-list is one or more of these comma delimited values:
column-spec
column-label
result-set-column-number

Page 28

having-search-condition is a search-condition which may optionally contain expressions using set functions.

column-list is a comma delimited list of column-names and column-labels.

column-name refers to a column defined in the DBD file. If a column-label is associated with a column-name by an AS clause, it refers to
that column defined in the DBD file.

table-name refers to a table defined in the DBD file.

In a SELECT statement, a column name may be unqualified or qualified with a table-name or a table-label that refers to a table-name,
which thus refers to a table defined in the DBD file.

value-list is a list of string and numeric values.

Sub-queries are not supported.

The use of <>, NOT LIKE, NOT BETWEEN, NOT IN and dissimilar OR conditions are not recommended on large files as indexes will not
be utilized and the entire text file will be read sequentially.

The tables in a JOIN are processed from left to right. With this in mind, the tables should be ordered so that the left table(s) can
provide data which can be used with the indexes of the right table(s). Doing this will enhance performance.

3.3 SQL data definition statements
The specific SQL data definition statements (DDL) that DB/C FS supports are summarized with the following. Those elements
enclosed in brackets ([]) are optional. Elements separated by the vertical bar (|) mean that one or the other is allowed. Note that
DDL must be used carefully. DB/C FS server processes do not periodically check the DBD file for changes. Therefore, DDL
commands should only be used on tables that are not currently being used by other connections.

CREATE TABLE table-name (column-definition, . . .)

column-definition is:
column-name datatype [(length)]

Example: CREATE TABLE TEST (ITEM CHAR(6), VEND CHAR(6), LIST NUMERIC(9,3), QYTO NUMERIC(6))

table-name is the unique name for the table. The table name will be stored in uppercase in the DBD file, regardless of what case was
used in the CREATE statement.

Page 29

CREATE [UNIQUE | ASSOCIATIVE] INDEX index-name ON table-name (column-name, . . .)

Example: CREATE UNIQUE INDEX TEST1 ON TEST (VEND, ITEM)

index-name specifies the name of the index. If no extension is specified, the extension .isi or .aim is appended accordingly. If the
index file does not yet exist it will be created. If the column (key) specifications do not match the existing index file, then the index
file is replaced with a new index file. New index files are created in the preppath directory specified in the configuration file. If
preppath is not defined, then the first directory in filepath is used.

The UNIQUE option prevents the index file from allowing duplicate values. Insertion of non-unique value into the table with a
UNIQUE index will result in an error. If instead, ASSOCIATIVE is specified, then an AIM file is created.

The column length parameter allows an index to be created on the first length characters of a CHAR column.

DROP TABLE [IF EXISTS] table-name

Example: DROP TABLE TEST

The IF EXISTS option can be added to prevent an error from occurring when attempting to drop a table that might not exist.

table-name is not case sensitive. When a table is dropped, it is removed from the DBD file, and all associated index files and text files
are removed as well.

DROP [ASSOCIATIVE] INDEX table-name.index-name

Example: DROP INDEX TEST.TEST1

The index-name index will be deleted from disk. In addition, the index will be removed from the table tablename in the DBD.
The .aim or .isi extension should be omitted on the index name.

ALTER TABLE table-name alter-specification

alter-specification is:
ADD [COLUMN] (column-name data-type [(length)] , . . .)
| ADD [UNIQUE | ASSOCIATIVE] INDEX index-name (column-name [(length)] , . . .)
| DROP [COLUMN] column-name
| DROP [ASSOCIATIVE] INDEX index-name
| RENAME [TO] new-table-name

Page 30

Examples: ALTER TABLE CUSTOMER ADD COLUMN LASTNAME CHAR(6)
 ALTER TABLE CUSTOMER DROP COLUMN FAXNO

ALTER TABLE CUSTOMER DROP ASSOCIATIVE INDEX LCUSTOMER
ALTER TABLE CUSTOMER RENAME TO NEWCUST

For DROP INDEX, index-name should not have an extension. DROP COLUMN will fail if an index exists on the column. In addition,
DROP COLUMN will not reformat the data file.

Page 31

Chapter 4. Java Client Programming Interface

4.1 Overview
The Java client programming application programming interface provides Java classes that allow access to DB/C FS data files using
traditional sequential, random, indexed and AIM indexed access methods. These classes are provided in the file named fs.jar.
The classes contained in this file are all part of the com.dbcswc.fs package. The classes are: Connection, File, Util,
ConnectionException and FileException.

4.2 Connection
The Connection class implements a connection to the DB/C FS server. An instance of this class is required by the File class for
most of its functionality.

 public static String getgreeting(String server) throws ConnectionException

 public static String getgreeting(String server, int port, boolean encrypt, String authfile)
 throws ConnectionException

If the DB/C FS server specified by the server parameter is available, the getgreeting method returns a String that provides the
version number of the DB/C FS server. The server parameter is the domain name or TCP/IP address of the computer running the
DB/C FS server. The port parameter is the port to connect to on the server. Specify a value of -1 to use the default port number. If
encrypt is true and JSSE is not available, a ConnectionException is thrown. The authfile parameter should be set to null. If
the server is not available, a ConnectionException is thrown.

public Connection(String server, int serverport, int localport, String database,
 String user, String password, boolean encrypt, String authfile)
 throws ConnectionException

 public Connection(String server, String database, String user, String password,
 boolean encrypt, String authfile) throws ConnectionException

 public Connection(String server, int serverport, int localport, String database,
 String user, String password) throws ConnectionException

 public Connection(String server, String database, String user, String password)
 throws ConnectionException

Page 32

The Connection constructor creates a connection between this Java virtual machine and the DB/C FS server. The server
parameter is either the domain name or the TCP/IP address of the computer running the DB/C FS server. The serverport
parameter specifies the TCP/IP port number of the DB/C FS Server. If this value is –1, or is not specified, the default value is used.
The localport parameter specifies the local TCP/IP port number that will be used by the server to connect back to complete the
connection. If this value is -1 or is not specified, a dynamically created port number will be used. If this value is zero, then this
signals the server that the connection should use the sport feature of the server. The database parameter is the name of the
database to be accessed (i.e. the name of the DBD file, without the .dbd extension). The user and password parameters are the user
id and password required for login to the DB/C FS server. If encrypt is true and JSSE is not available, a ConnectionException
is thrown. The authfile parameter should be set to null. If the connection to the server cannot be established, a
ConnectionException is thrown.

public void disconnect()
The disconnect method destroys this connection with the DB/C FS server.

public String getserver()
The getserver method returns the name of the server associated with this Connection instance.

 public String getdatabase()
The getdatabase method returns the name of the database associated with this Connection instance.

public String getuser()
The getuser method returns the name of the user associated with this Connection instance.

4.3 File
The File class implements sequential, random, indexed and AIM indexed data access to a DB/C FS server. An instance of the
Connection class is required by File for most of its functionality. The following public fields are used by the setoptions and
getoptions methods.

 public static final int VARIABLE
 public static final int COMPRESSED
 public static final int TEXT
 public static final int DATA
 public static final int CRLF
 public static final int BINARY
 public static final int READONLY

Page 33

 public static final int EXCLUSIVE
 public static final int DUP
 public static final int NODUP
 public static final int CASESENSITIVE
 public static final int LOCKAUTO
 public static final int LOCKSINGLE
 public static final int LOCKNOWAIT
 public static final int CREATEFILE
 public static final int CREATEONLY
 public static final int FILEOPEN
 public static final int IFILEOPEN
 public static final int AFILEOPEN

Each of the methods in File whose names start with read returns a record in the record buffer. The integer value returned from
these methods is the number of characters in the record that was just read, or -1 if the record was not found or the read position was
at the end of file, or -2 for those methods that end with lock when the lock could not be obtained and the LOCKNOWAIT option was
specified.

public File(Connection fs)
The fs parameter of the File constructor is a Connection to a DB/C FS server.

public void setdatafile(String datafilename)
The datafilename parameter of setdatafile specifies the data file name to be used during the open method. This method must
be called before the open method is called. It is optional if the setindexfile method is called, otherwise it is required for open to be
successful.

 public void setindexfile(String indexfilename)
The indexfilename parameter of setindexfile specifies the index file name to be used during the open method. This method
must be called before the open method is called. It is required for indexed file open operations.

 public String getfilename()
The value returned is the data file name associated with this File.

public void setoptions(int options)
This method specifies the options for the following open operation. The value of the options parameter is the OR’d together value
of the public fields described above. Exactly one of the FILEOPEN, IFILEOPEN and AFILEOPEN must be specified. All other values

Page 34

are optional. Certain combinations of values are ambiguous and should not be specified (e.g. TEXT and BINARY). The result is
undefined for these ambiguous situations.

public int getoptions()
The value returned by getoptions is the OR’d together value of the public fields described above.

 public void setrecsize(int recsize)
The recsize operand of the setrecsize method specifies the record size to be used during the following open method. If the
VARIABLE option is specified, the recsize operand indicates the maximum possible size of a record. This method is required.

public int getrecsize()
This method returns the record size associated with the file . If the file contains variable length records, then the value returned is
the maximum record size.

 public void setkeysize(int keysize)
The keysize parameter of this method specifies the key size for the following open statement. This is required only when an
indexed file is being created. If it is specified when an existing index is being opened and the value does not match the key size of
the index, a FileException will be thrown by the open method.

 public void setkeyinfo(String keyinfo)
The keyinfo parameter of this method specifies the AIM key information for the following open statement. This is required only
when an AIM indexed file is being created. The value in keyinfo is a comma delimited list of field specifications. A field
specification is either a positive integer or is two positive integers separated by a hyphen.

 public void setmatchchar(char matchchar)
The matchchar parameter specifies the match character for AIM index operations.

 public void open() throws FileException
The open method creates or opens the file with filename and other parameters as specified in the preceeding methods. If the file
cannot be created or opened, a FileException is thrown.

 public void close() throws FileException
The close method closes this File instance. A File instance may be opened and closed multiple times. If the instance is not in
the open state, then a FileException is thrown.

Page 35

 public void closedelete() throws FileException
The closedelete method closes this File instance and deletes the associated data and index files. A File instance may be
opened and closed multiple times. If the instance is not in the open state, then a FileException is thrown.

 public boolean isopen()
The value returned by the isopen method is true if this File instance is in the open state, and is false otherwise.

 public void setrecordbuffer(char[] newrecbuf)
The setrecordbuffer method specifies the character array that will be used to hold the record that is read or written by various of
the following methods. This method is required.

public long fposit() throws FileException
The value returned by the fposit method is the value called the current file position. The current file position is the offset (in bytes)
of the last record read from or written to the file, or is the value specified by the reposit method if it was called after the most
recent read or write. The initial value returned by the fposit method immediately after a file is opened is zero. If the instance is not
in the open state, then a FileException is thrown.

public int reposit(long pos) throws FileException
The reposit method sets the value of the current file position to the value specified by the pos parameter. The value returned
indicates what the position is. The return value 0 means the current file position was set before end of file. The return value 1 means
the current file position was set at end of file. The return value 2 means the current file position was not set because the value
specified was past end of file.

 public int setposateof() throws FileException
The setposateof method sets the current file position to the end of file.

 public int readrandom(int recnum) throws FileException
The readrandom method reads a record into the record buffer. The record is read using the random access method. Random access
records must be fixed length (VARIABLE cannot be specified as an open option). The record read is specified by the recnum
parameter. The first record in the file is record number zero.

 public int readrandomlock(int recnum) throws FileException
The readrandomlock method operates the same as the readrandom method, except that the record is locked.

 public int readnext() throws FileException
The readnext method reads a record into the record buffer. The record is read using the sequential access method to retrieve the
record that is after the record most recently read.

Page 36

 public int readnextlock() throws FileException
The readnextlock method operates the same as the readnext method, except that the record is locked.

 public int readprev() throws FileException
The readprev method reads a record into the record buffer. The record is read using the sequential access method to retrieve the
record that is before the record most recently read.

 public int readprevlock() throws FileException
The readprevlock method operates the same as the readprev method, except that the record is locked.

 public int readsame() throws FileException
The readsame method reads a record into the record buffer. The record that is read is the record at the current file position.

 public int readkey(String key) throws FileException
The readkey method reads a record into the record buffer. The record is read using the indexed sequential access method. The key
parameter specifies the key used to lookup the record.

 public int readkeylock(String key) throws FileException
The readkeylock method operates the same as the readkey method, except that the record is locked.

 public int readkeynext() throws FileException
The readkeynext method reads a record into the record buffer. If this file is accessed by the index sequential access method, then
the next key sequential record is read. If this file is accessed by the AIM index access method, then the next record in the result set is
read.

 public int readkeynextlock() throws FileException
The readkeynextlock method operates the same as the readkeynext method, except that the record is locked.

 public int readkeyprev() throws FileException
The readkeyprev method reads a record into the record buffer. If this file is accessed by the index sequential access method, then
the previous key sequential record is read. If this file is accessed by the AIM index access method, then the previous record in the
result set is read.

 public int readkeyprevlock() throws FileException
The readkeyprevlock method operates the same as the readkeyprev method, except that the record is locked.

 public int readaim(String keyinfo) throws FileException
This method reads the first record of a result set of records into the record buffer. The result set is created using the AIM index access

Page 37

method. The keyinfo parameter specifies the lookup criteria. The lookup criteria is a String of 4 or more characters. The first two
characters are digits (blank filled in the first position) that specify the column for the search. The third character is F or X or L or R
for floating, exact, left or right match, respectively. The remaining characters are the match characters. The result set consists of
those records that match the lookup criteria.

public int readaimlock(String keyinfo) throws FileException
This method operates the same as the readaim method, except that the record is locked.

 public int readaim(String[] keyinfoarray) throws FileException
This method reads the first record of a result set of records into the record buffer. The result set is created using the AIM index access
method. The keyinfoarray parameter array specifies the multiple lookup criteria. The syntax of each of the lookup criteria is as
specified above. The result set consists of those records that match all of the lookup criteria.

 public int readaimlock(String[] keyinfoarray) throws FileException
This method operates the same as the readaim method, except that the record is locked.

 public void writerandom(int reclen, int recnum) throws FileException
The writerandom method writes a record from the record buffer using the random access method. The length of the record written
is specified by the reclen parameter. The record is written into the record number specified by the recnum parameter.

 public void writenext(int reclen) throws FileException
The writenext method writes a record from the record buffer using the sequential access method. The length of the record written
is specified by the reclen parameter. The record is written after the most recently written record.

 public void writeateof(int reclen) throws FileException
The writeateof method writes a record from the record buffer using the sequential access method. The length of the record
written is specified by the reclen parameter. The record is written at the end of the file.

 public void writekey(int reclen, String key) throws FileException
The writekey method writes a record from the record buffer using the sequential access method and the indexed access method.
The length of the record written is specified by the reclen parameter. The record is written at the end of the file. The value of the
key parameter and the position of the record just written is added to the index file.

 public void writeaim(int reclen) throws FileException
The writeaim method writes a record from the record buffer using the sequential access method and the AIM indexed access
method. The length of the record written is specified by the reclen parameter. The record is written at the end of the file. The AIM
index is updated to reflect the values of the AIM keys that were contained in the record just written.

Page 38

 public void insertkey(String key) throws FileException
This method inserts a key and the current file position into the index file.

public void insertkeys(int reclen) throws FileException
This method causes the AIM index is updated to reflect the values of the AIM keys that are contained in the record in the record
buffer.

 public void update(int reclen) throws FileException
This method updates a record from the record buffer. The length of the record written is specified by the reclen parameter. The
record is written over the record at the current file position.

 public void delete() throws FileException
This method deletes the record that was most recently read or written.

 public void delete(String key) throws FileException
This method deletes a key from the index file and the record that it is associated with from the data file. The key parameter specifies
the key that is deleted.

 public void deletekey(String key) throws FileException
This method deletes the key that is specified by the key parameter from the index file.

 public void unlock(long pos) throws FileException
This method unlocks the record at the file position specified by the pos parameter.

 public void unlock() throws FileException
This method unlocks records locked by this instance of File.

 public void weof(long pos) throws FileException
This method writes an end of file marker at the position specified by the pos parameter.

 public int compare(File file) throws FileException
The compare method compares this File instance with the instance specified by the file parameter. The integer value that is
returned is zero if the files are the same. The value will be less than zero if the files compare such that this File instance is less than
the File instance of the file parameter. The value will be positive otherwise. The concept of less than is not defined, but will always
be the same for comparison of the same files. This method is used for ordering filelock calls to avoid deadlock.

Page 39

 public void filelock() throws FileException
The filelock method locks this data file. If the data file is already locked, this method will wait for the data file to be unlocked by
the other program.

 public void fileunlock() throws FileException
The fileunlock method unlocks this data file.

Page 40

Chapter 5. .NET Client Programming Interface

5.1 Overview
The .NET client programming application programming interface provides a .NET class library that allows access to DB/C FS data
files using traditional sequential, random, indexed and AIM indexed access methods. These classes are provided in the assembly
named fs.dll. The classes contained in this assembly are all part of the dbcfs namespace. The classes are: Connection, File,
Util, ConnectionException and FileException. Encryption is not available.

5.2 Connection
The Connection class implements a connection to the DB/C FS server. An instance of this class is required by the File class for
most of its functionality.

 public static string getgreeting(string server)
 public static string getgreeting(string server, int port, bool encrypt, string authfile)

If the DB/C FS server specified by the server parameter is available, then this method returns a value that provides the version
number of the DB/C FS server. The server parameter is the domain name or the TCP/IP address of the computer running the DB/C
FS server. The encrypt parameter is ignored. The authfile parameter should be set to null. If the server is not available, a
ConnectionException is thrown.

 public Connection(string server, int serverport, int localport, string database,
 string user, string password, bool encrypt, string authfile)
 public Connection(string server, string database, string user, string password,
 bool encrypt, string authfile)
 public Connection(string server, int serverport, int localport, string database,
 string user, string password)
 public Connection(string server, string database, string user, string password)
The Connection constructor creates a connection between the client and the DB/C FS server. The server parameter is either the
domain name or the TCP/IP address of the computer running the DB/C FS server. serverport specifies the TCP/IP port number
of the DB/C FS Server. If this value is zero or is not specified, the default value is used. localport specifies the local TCP/IP port
number that will be used by the server to connect back to complete the connection. If this value is –1 or is not specified, a
dynamically created port number will be used. If this value is zero, then this signals the server that the connection should use the
sport feature of the server. The database parameter is the name of the database to be accessed, which is the name of the DBD file

Page 41

with out the .dbd extension. The user and password parameters are the user id and password required for login to the server.
authfile is ignored. If the connection to the server cannot be created, a ConnectionException is thrown.

 public void disconnect()
This method destroys this connection with the DB/C FS server.

 public string getserver()
This method returns the name of the server associated with this Connection instance.

public string getdatabase()
This method returns the name of the database associated with this Connection instance.

 public string getuser()
This method returns the name of the user associated with this Connection instance.

5.3 File
The File class implements sequential, random, indexed and AIM indexed data access to a DB/C FS server. An instance of the
Connection class is required by the File class for most of its functionality. The following fields are used by the setoptions and
getoptions methods.

public static const int VARIABLE
 public static const int COMPRESSED
 public static const int TEXT
 public static const int DATA
 public static const int CRLF
 public static const int EBCDIC
 public static const int BINARY
 public static const int READONLY
 public static const int EXCLUSIVE
 public static const int DUP
 public static const int NODUP
 public static const int CASESENSITIVE
 public static const int LOCKAUTO
 public static const int LOCKSINGLE
 public static const int LOCKNOWAIT
 public static const int CREATEFILE

Page 42

 public static const int CREATEONLY
 public static const int FILEOPEN
 public static const int IFILEOPEN
 public static const int AFILEOPEN
Each of the methods in the File class whose names that start read return a record in the record buffer. The integer value returned
from these methods is the number of characters in the record that was just read, or -1 if the record was not found or the read position
was at the end of file, or -2 for those methods that end with lock when the lock could not be obtained and the LOCKNOWAIT option
was specified.

 public File(dbcfs.Connection fs)
The fs parameter of the File constructor is a Connection to a DB/C FS server.

 public void setdatafile(string datafilename)
The datafilename parameter of thia method specifies the data file name to be used during the open method. This method must
be called before the open method is called. It is optional if the setindexfile method is called, otherwise it is required for open to
be successful.

 public void setindexfile(string indexfilename)
The indexfilename parameter of this method specifies the index file name to be used during the open method. This method must
be called before the open method is called. It is required for indexed file open operations.

 public string getfilename()
The value returned is the data file name associated with this File instance.

 public void setoptions(int options)
This method specifies the options for the following open operation. The value of the options parameter is the OR’d together value
of the fields described above. Exactly one of the FILEOPEN, IFILEOPEN and AFILEOPEN must be specified. All other values are
optional. Certain combinations of values are ambiguous and should not be specified (e.g. TEXT and BINARY). The result is
undefined for these ambiguous situations.

 public int getoptions()
The value returned by this method is the OR’d together value of the fields described above.

 public void setrecsize(int recsize)
The recsize parameter of this method specifies the record size to be used during the following open operation. If the VARIABLE
option is specified, the recsize operand indicates the maximum possible size of a record. This method is required.

Page 43

 public int getrecsize()
This method returns the record size associated with the file. If the file contains variable length records, then the value returned is the
maximum record size.

 public setkeysize(int keysize)
The keysize parameter of this method specifies the key size for the following open operation. This is required only when an
indexed file is being created. If it is specified when an existing index is being opened and the value does not match the key size of
the index, a FileException will be thrown by the open method.

 public void setkeyinfo(string keyinfo)
The keyinfo parameter of this method specifies the AIM key information for the following open operation. This is required only
when an AIM indexed file is being created. The value in keyinfo is a comma delimited list of field specifications. A field
specification is either a positive integer or is two positive integers separated by a hyphen.

 public void setmatchchar(char matchchar)
The matchchar parameter specifies the match character for AIM index operations.

 public void open()
The open method creates or opens the file with filename and other parameters as specified in the preceeding methods. If the file
cannot be created or opened, a FileException is thrown.

 public void close()
The close method closes this File instance. A File instance may be opened and closed multiple times. If the instance is not in
the open state, then a FileException is thrown.

 public void closedelete()
The closedelete method closes this File instance and deletes the associated data and index files. A File instance may be
opened and closed multiple times. If the instance is not in the open state, then a FileException is thrown.

 public bool isopen()
The value returned by this method is true if this File instance is in the open state, and false otherwise.

 public void setrecordbuffer(char[] newrecbuf)
This method specifies the character array that will be used to hold the record that is read or written by various of the following
methods. This method is required.

 public long fposit()
The value returned by this method is the current file position. The current file position is the offset (in bytes) of the last record read

Page 44

from or written to the file, or is the value specified by the reposit method if it was called after the most recent read or write. The
initial value returned by the fposit method immediately after a file is opened is zero. If the instance is not in the open state, then a
FileException is thrown.

 public int reposit(long pos)
This method sets the value of the current file position to the value specified by the pos parameter. The value returned indicates
what the position is. The return value 0 means the current file position was set before end of file. The return value 1 means the
current file position was set at end of file. The return value 2 means the current file position was not set because the value specified
was past the end of file.

 public int setposateof()
This method sets the current file position to the end of file position.

 public int readrandom(int recnum)
Thismethod reads a record into the record buffer. The record is read using the random access method. Random access records must
be fixed length (VARIABLE cannot be specified as an open option). The record read is specified by the recnum parameter. The first
record in the file is record number zero.

 public int readrandomlock(int recnum)
This method operates the same as the readrandom method, except that the record is locked.

 public int readnext()
This method reads a record into the record buffer. The record is read using the sequential access method to retrieve the record that is
after the record most recently read.

 public int readnextlock()
This method operates the same as the readnext method, except that the record is locked.

 public int readprev()
This method reads a record into the record buffer. The record is read using the sequential access method to retrieve the record that is
before the record most recently read.

 public int readprevlock()
This method operates the same as the readprev method, except that the record is locked.

 public int readsame()
This method reads a record into the record buffer. The record that is read is the record at the current file position.

Page 45

 public int readkey(string key)
This method reads a record into the record buffer. The record is read using the indexed sequential access method. The key
parameter specifies the key used to lookup the record.

 public int readkeylock(string key)
This method operates the same as the readkey method, except that the record is locked.

 public int readkeynext()
This method reads a record into the record buffer. If this file is accessed by the index sequential access method, then the next key
sequential record is read. If this file is accessed by the AIM index access method, then the next record in the result set is read.

 public int readkeynextlock()
This method operates the same as the readkeynext method, except that the record is locked.

 public int readkeyprev()
This method reads a record into the record buffer. If this file is accessed by the index sequential access method, then the previous
key sequential record is read. If this file is accessed by the AIM index access method, then the previous record in the result set is
read.

 public int readkeyprevlock()
This method operates the same as the readkeyprev method, except that the record is locked.

 public int readaim(string keyinfo)
This method reads the first record of a result set of records into the record buffer. The result set is created using the AIM index access
method. The keyinfo parameter specifies the lookup criteria. The lookup criteria is a string of 4 or more characters. The first two
characters are digits (blank filled in the first position) that specify the column for the search. The third character is F or X or L or R
for floating, exact, left or right match, respectively. The remaining characters are the match characters. The result set consists of
those records that match the lookup criteria.

 public int readaimlock(string keyinfo)
This method operates the same as the readaim method, except that the record is locked.

 public int readaim(string[] keyinfoarray)
This method reads the first record of a result set of records into the record buffer. The result set is created using the AIM index access
method. The keyinfoarray parameter array specifies the multiple lookup criteria. The syntax of each of the lookup criteria is as
specified above. The result set consists of those records that match all of the lookup criteria.

Page 46

 public int readaimlock(string[] keyinfoarray)
This method operates the same as the readaim method, except that the record is locked.

 public void writerandom(int reclen, int recnum)
This method writes a record from the record buffer using the random access method. The length of the record written is specified by
the reclen parameter. The record is written into the record number specified by the recnum parameter.

 public void writenext(int reclen)
This method writes a record from the record buffer using the sequential access method. The length of the record written is specified
by the reclen parameter. The record is written after the most recently written record.

 public void writeateof(int reclen)
This method writes a record from the record buffer using the sequential access method. The length of the record written is specified
by the reclen parameter. The record is written at the end of the file.

 public void writekey(int reclen, string key)
This method writes a record from the record buffer using the sequential access method and the indexed access method. The length
of the record written is specified by the reclen parameter. The record is written at the end of the file. The value of the key
parameter and the position of the record just written is added to the index file.

 public void writeaim(int reclen)
This method writes a record from the record buffer using the sequential access method and the AIM indexed access method. The
length of the record written is specified by the reclen parameter. The record is written at the end of the file. The AIM index is
updated to reflect the values of the AIM keys that were contained in the record just written.

 public void insertkey(string key)
This method inserts a key specified by key and the current file position into the index file.

 public void insertkeys(int reclen)
This method updates the AIM index to reflect the values of the AIM keys that are contained in the record in the record buffer.

 public void update(int reclen)
This method updates a record from the record buffer. The length of the record written is specified by the reclen parameter. The
record is written over the record at the current file position.

 public void delete()
This method deletes the record that was most recently read or written.

Page 47

 public void delete(string key)
This method deletes a key from the index file and the record that it is associated with from the data file. The key parameter specifies
the key that is deleted.

 public void deletekey(string key)
This method deletes the key that is specified by the key parameter from the index file.

 public unlock(long pos)
This method unlocks the record at the file position specified by the pos parameter.

 public void unlock()
This method unlocks records locked by this instance of File.

 public void weof(long pos)
This method writes an end of file marker at the position specified by the pos parameter.

 public int compare(dbcfs.File file)
This method compares this File instance with the instance specified by the file parameter. The integer value that is returned is zero
if the files are the same. The value will be less than zero if the files compare such that this File instance is less than the File
instance of the file parameter. The value will be positive otherwise. The concept of less than is not defined, but will always be the
same for comparison of the same files. This method is used for ordering filelock calls to avoid deadlock.

 public void filelock()
This method locks this data file. If the data file is already locked, this method will wait for the data file to be unlocked by the other
program.

 public void fileunlock()
This method unlocks this data file.

5.4 Util
The Util class implements several miscellaneous static methods that are used by the Connection and File classes and may also
be used by other C# programs.

 public static string currentdatetime()
This method returns a value that is 16 characters long which contains the current timestamp in YYYYMMDDHHMMSSHH format
(the final HH is hundredths of a second).

Page 48

 public static string itos(int value, int size)
This method returns a value that is the string value of the value parameter and is the length specified by the size parameter. The
value is truncated or blank filled on the left to fit the length specified.

 public static string itoszf(int number, int count)
This method returns a value that is the integer value of the value parameter and is the length specified by the count parameter. The
value is truncated or zero filled on the left to fit the length specified.

 public static string stos(string value, int size)
This method returns a value that is the truncated or blank filled on right value of the value parameter. The length of the string
value returned is specified by the size parameter.

 public static string stonums(string value, int size1, int size2)
This method returns a value that is the reformatted numeric value specified by the value parameter. The size1 parameter
specifies the number of digits left of the decimal point in the result. The size2 parameter specifies the number of digits right of the
decimal point in the result. If size2 is zero, no decimal point is contained in the resulting value. The value is truncated, not
rounded, if necessary.

 public static string zeronums(int size1, int size2)
This method returns a value that is numeric value zero with a format specified by the size1 and size2 parameters. If size2 is
zero, size1 specifies the number of characters in the resulting string, which will contain the digit zero right justified and preceeded
by blanks. If size2 is non-zero, size1 specifies the number of leading blanks, followed by a decimal point and then by size2
zeroes.

 public static void itoca(int value, char[] dest, int destoff, int size)
This method converts an integer value specified by the value parameter to a string of characters that are stored in successive
characters of the dest parameter array. The characters are stored starting at the index specified by the destoff parameter. The
number of characters stored is specified by the size parameter. The characters are truncated or blank filled on the left in the same
manner as by the itos method.

 public static int catoi(char[] source, int sourceoff, int size)
This method returns an integer that is the value specified by the characters from the source array, starting with the character at the
index specified by the sourceoff parameter. The number of characters used is specified by the size parameter.

Page 49

5.5 ConnectionException
The ConnectionException class implements a class that is used for exceptional conditions by the Connection class. The
ConnectionException class extends Exception.

 public string getinfo()
This method returns a value that contains descriptive information about this ConnectionException.

 public string ToString()

This method returns a string that contains descriptive information about this ConnectionException.

5.6 FileException
The FileException class implements a class that is used for exceptional conditions by the File class. The FileException class
extends Exception.

 public FileException(int error)
This FileException constructor is used when only an error number is available.

 public FileException(int error, string info)
This FileException constructor is used when an error number and descriptive information are available.

 public int geterror()
This method returns the error number associated with this FileException.

 public string getinfo()
This method returns a value that contains descriptive information about this FileException.

 public string ToString()
This method returns a string that contains the error number and descriptive information about this FileException.

Page 50

Chapter 6. C API

The C client programming application programming interface provides several C functions that allow access to DB/C FS data files
using traditional sequential, random, indexed and AIM indexed access methods. These functions are provided in the file
fsfileio.c. The fsfileio.h include file contains the function prototypes and defininitions for what follows. The C functions
require TCP/IP code which is contained in tcp.c and tcp.h. You may need to modify the TCP/IP interface for other platforms.

The type OFFSET is a 64 bit signed integer.

By default, these functions require the OpenSSL encryption library to be included. OpenSSL can be obtained at www.openssl.org. If
you do not require encryption, compile tcp.c with the -DDBC_SSL=0 command line option.

Unless otherwise specified, the value zero is returned if the function completes successfully.

int fsgetgreeting(char *server, int port, int encrypt, char *auth, char *msg, int length)

If the DB/C FS server is available, the fsgetgreeting function returns a zero-delimited string that is the version number of the
DB/C FS server. The server parameter is a zero-delimited string that is either the domain name or the TCP/IP address of the
computer running the DB/C FS server. The port parameter is the TCP/IP port number of the DB/C FS server. If port is zero, the
default value is used. If encrypt is non-zero, encryption is used. The auth parameter should be set to null. The msg parameter
points to the area to which the return string is moved. The length parameter specifies the size of the msg memory. The value -1 is
returned if an error occurs.

int fsgeterror(char *msg, int length)

The fsgeterror function returns a zero delimited string that describes the most recent error encountered by any of the functions
described in this chapter.

 int fsconnect(char *server, int serverport, int localport, int encrypt, char *authfile,
 char *database, char *user, char *pswd);

The fsconnect function creates a connection between this program and the DB/C FS server. The server parameter is a zero-
delimited string that is either the domain name or the TCP/IP address of the computer running the DB/C FS server. The
serverport parameter is the TCP/IP port number of the DB/C FS server. If serverport is zero, the default value is used. The
localport parameter is the local TCP/IP port number that the server will connect back to to establish the connection. If this value
is –1, a dynamically created port number will be used. If this value is zero, then this signals the server that the connection should use

Page 51

the sport feature of the server. If encrypt is non-zero, then messages sent and received will be encrypted. The authfile parameter
should be set to null. The database parameter is a zero-delimited string that is the name of the database to be accessed which is the
name of the DBD file without the .dbd extension). The user and pswd parameters point to zero-delimited strings that are the user
id and password reuired for login to the DB/C FS server. If the value returned is positive, the connec tion was created successfully
and the connection handle is the value returned. If the value returned is negative, the connection was not created.

 int fsdisconnect(int connection);

The fsdisconnect function destroys the connection with the DB/C FS server. The connection parameter is the connection
handle that was returned by the fsconnect function. If the disconnect function fails, -1 is returned.

int fsopen(int connection, char *txtfilename, int options, int recsize);

 int fsprep(int connection, char *txtfilename, int options, int recsize);

 int fsopenisi(int connection, char *isifilename, int options, int recsize, int keysize);

 int fsprepisi(int connection, char *txtfilename, char *isifilename, int options,
 int recsize, int keysize);

 int fsopenaim(int connection, char *aimfilename, int options, int recsize);

 int fsprepaim(connection, char *txtfilename, char *aimfilename, int options,
 int recsize, char *keyinfo, char matchchar);

The open and prep functions open and create files. The fsopen function opens a text file for sequential and random access. The
fsprep function creates a text file for sequential and random access. The fsopenisi function opens an indexed file and a text file
for indexed sequential access. The fsprepisi function creates an indexed file and a text file for indexed sequential access. The
fsopenaim function opens an associative indexed file and a text file for associative index access. The fsprepaim function creates
an associative indexed file and a text file for associative index access.

The connection parameter is the connection handle that was returned by the fsconnect function.

The txtfilename parameter is the pointer to a zero-delimited string that specifies the text file that is to be opened or created.

The isifilename parameter is the pointer to a zero-delimited string that specifies the index file that is to be opened or created.

The aimfilename parameter is the pointer to a zero-delimited string that specifies the associative index file that is to be opened or
created.

Page 52

The options parameter specifies several file open and create options. Here are the #defines for the values for options that may be
or’d together.

FS_VARIABLE
 FS_COMPRESSED
 FS_TEXT
 FS_DATA
 FS_CRLF
 FS_BINARY
 FS_READONLY
 FS_EXCLUSIVE
 FS_DUP
 FS_NODUP
 FS_CASESENSITIVE
 FS_LOCKAUTO
 FS_LOCKSINGLE
 FS_LOCKNOWAIT
 FS_CREATEONLY

The recsize parameter specifies the maximum record size for variable length records and the record size for fixed length records.
The keysize parameter specifies the index key size. The keyinfo parameter is the pointer to a zero-delimited string that specifies
the aim key information. Its format is the same as in DB/C DX. The matchchar parameter specifies the aim search character.

If the value returned is a positive number, then the open or create was successful and the value is the file handle. If the value
returned is negative, then an error occurred.

int fsclose(int filehandle);

The fsclose function closes the file handle specified. The value -1 is returned if an error occurs.

 int fsclosedelete(int filehandle);

The fsclosedelete function closes the file handle specified and deletes the associated file or files. The value -1 is returned if an
error occurs.

 int fsfposit(int filehandle, OFFSET pos);

The fsfposit function returns the value called the current file position into the memory pointed to by the pos parameter. The
current file position is the offset (in bytes) of the last record read from or written to the text file, or is the value specified by the

Page 53

reposit function if it was called after the most recent read or write. The initial value of fposit immediately after a file is opened
is zero. The return value -1 is if the file handle is invalid.

 int fsreposit(int filehandle, OFFSET pos);

The fsreposit function sets the value of the current file position to the value specified by the pos parameter. The value returned
indicates what the position is. The return value 0 means the current file position was set before end of file. The return value 1 means
the current file position was set at end of file. The return value 2 means the current file position was not set because the value
specified was past end of file. The return value -1 is if the file handle is invalid.

 int fssetposateof(int filehandle);

The fssetposateof function sets the current file position to the end of the text file. The return value -1 is if the file handle is
invalid.

int fsreadrandom(int filehandle, int recnum, char *record, int length);

 int fsreadrandomlock(int filehandle, int recnum, char *record, int length);

 int fsreadnext(int filehandle, char *record, int length);

 int fsreadnextlock(int filehandle, char *record, int length);

 int fsreadprev(int filehandle, char *record, int length);

 int fsreadprevlock(int filehandle, char *record, int length);

 int fsreadsame(int filehandle, char *record, int length);

 int fsreadsamelock(int filehandle, char *record, int length);

 int fsreadkey(int filehandle, char *key, char *record, int length);

 int fsreadkeylock(int filehandle, char *key, char *record, int length);

 int fsreadkeynext(int filehandle, char *record, int length);

 int fsreadkeynextlock(int filehandle, char *record, int length);

 int fsreadkeyprev(int filehandle, char *record, int length);

 int fsreadkeyprevlock(int filehandle, char *record, int length);

 int fsreadaimkey(int filehandle, char *aimkey, char *record, int length);

Page 54

 int fsreadaimkeylock(int filehandle, char *aimkey, char *record, int length);

 int fsreadaimkeys(int filehandle, char **aimkeys, int aimkeyscount, char *record,
 int length);

 int fsreadaimkeyslock(int filehandle, char **aimkeys, int aimkeyscount, char *record,
 int length);

 int fsreadaimnext(int filehandle, char *record, int length);

 int fsreadaimnextlock(int filehandle, char *record, int length);

 int fsreadaimprev(int filehandle, char *record, int length);

 int fsreadaimprevlock(int filehandle, char *record, int length);

The various fsread functions read a record into the record memory area. The filehandle parameter is the file handle that was
returned by an fsopen or fsprep function. The record parameter points to an area that will contain the record after it is read.
The length parameter is the size of the record memory. If the value returned by an fsread function is non-negative, then it is the
number of bytes contained in the record that was read and stored in the record memory area. Note that zero is a valid record length.
If the value returned by an fsread function is -1, then the filehandle is invalid. If the value returned by fsread is -3, then the
record was not found or the file position was at the end of the file. If the value returned by an fsread function is -2, then the record
lock could not be obtained and LOCKNOWAIT was specified. Any other negative return value indicates an error.

For each of the following descriptions, the fsread...lock function operates the same as the corresponding function without the lock
suffix, except that the record is locked.

The fsreadrandom function reads a fixed length record at the record number specified by recnum. The recnum value zero
indicates the first record in the file.

The fsreadnext function reads a record using the sequential access method to retrieve the record that is after the record most
recently read.

The fsreadprev function reads a record using the sequential access method to retrieve the record that is before the record most
recently read.

The fsreadsame function reads the record at the current file position.

The fsreadkey function reads the record using the indexed sequential access method. The key parameter is a pointer to a zero-
delimited string that specifies the key used to lookup the record.

Page 55

The fsreadkeynext function reads the record using the index sequential access method to read the next key sequential record.

The fsreadkeyprev function reads the record using the index sequential access method to read the previous key sequential record.

The fsreadaimkey function reads the record using the associative index access method to read the first record that matches the
criteria specified by the aimkey parameter. The aimkey parameter is a pointer to a zero-delimited string of 4 or more characters.
The first two characters are digits (blank filled in the first position) that specify the column for the search. The third character is F or
X or L or R for floating, exact, left or right match, respectively. The remaining characters are the match characters.

The fsreadaimkeys function reads the record using the associative index access method to read the first record that matches the
criteria specified by the aimkeys and aimkeyscount parameters. The aimkeys parameter is a pointer to an array of pointers,
each of which points to a key in the same format as described in the previous paragraph. The aimkeyscount parameter specifies
the number of entries in the array of pointers.

The fsreadaimnext function reads the next record that matches the key(s) specified by the most recent fsreadaimkey or
fsreadaimkeys function.

The fsreadaimprev function reads the previous record that matches the key(s) specified by the most recent fsreadaimkey or
fsreadaimkeys function.

 int fswriterandom(int filehandle, int recnum, char *record, int length);

 int fswritenext(int filehandle, char *record, int length);

 int fswriteateof(int filehandle, char *record, int length);

 int fswritekey(int filehandle, char *key,char * record, int length);

 int fswriteaim(int filehandle, char *record, int length);

The fswriterandom function writes a record using the random access method. The record parameter points to the record. The
length of the record is specified by the length parameter. The record is written into the record number specified by the recnum
parameter.

The fswritenext function writes a record using the sequential access method. The record parameter points to the record. The
length of the record is specified by the length parameter. The record is written after the most recently written record.

The fswriteateof function writes a record using the sequential access method. The record parameter points to the record. The
length of the record is specified by the length parameter. The record is written at the end of the file.

Page 56

The fswritekey function writes a record using the sequential access method and the indexed access method. The record
parameter points to the record. The length of the record is specified by the length parameter. The record is written at the end of
the file. The value of the key parameter and the position of the record just written is added to the index file.

The fswriteaim function writes a record using the sequential access method and the AIM indexed access method. The record
parameter points to the record. The length of the record written is specified by the length parameter. The record is written at the
end of the file. The AIM index is updated to reflect the values of the AIM keys that were contained in the record just written.

 int fsinsertkey(int filehandle, char *key);

The fsinsertkey function inserts a key and the current file position into an index file. The key parameter is a pointer to a zero-
delimited string that is the key inserted.

 int fsinsertkeys(int filehandle, char *record, int length);

The fsinsertkeys function causes the aim index to be updated to reflect the values of the AIM keys that are contained in the
record specified by the record and length parameters.

 int fsupdate(int filehandle, char *record, int length);

The fsupdate function updates a record in place. The record written is specified by the record and length parameters. The new
record is written over the record at the current file position.

 int fsdelete(int filehandle);

The fsdelete function deletes the record that was most recently read or written.

 int fsdeletekey(int filehandle, char *key);

The fsdeletekey function deletes a key from the index file and the record that it is associated with from the data file. The key
parameter is a pointer to a zero-delimited string that specifies the key that is deleted. If the key is not found in the index file, then a
value of one is returned.

 int fsdeletekeyonly(int filehandle, char *key);

The fsdeletekeyonly function deletes only a key from the index file. The key parameter is a pointer to a zero-delimited

string that specifies the key that is deleted. If the key is not found in the index file, then a value of one is returned.

 int fsunlock(int filehandle, OFFSET pos);

Page 57

The fsunlock function unlocks the record at the file position specified by the pos parameter.

 int fsunlockall(int filehandle);

The fsunlockall function unlocks all locked records.

 int fsweof(int filehandle, OFFSET pos);

The fsweof function writes an end of file marker at the position specified by the pos parameter.

int fscompare(int filehandle, int filehandle2);

The fscompare function provides a repeatable comparison between the files associated with the two file handles. The integer value
that is returned is zero if the files are the same. The value will be one if the files compare such that the first filehandle is considered
less than the second file handle. The value will be two otherwise. The concept of less than is not defined, but will always be the
same for comparison of the same files. This function is used for ordering fsfilelock calls to avoid a deadlock.

 int fsfilelock(int filehandle);

The fsfilelock function locks the file. If the data file is already locked, this function will wait for the data file to be unlocked by
the other program.

 int fsfileunlock(int filehandle);

The fsfileunlock function unlocks this data file.

Page 58

Chapter 7. Programming Interface Error Codes

Error Code Meaning

601 File not found during OPEN, RENAME, or ERASE

602 Open mode confl icts with another program

603 Null or invalid file name used with OPEN, PREPARE, RENAME, or ERASE

604 Invalid file type used with OPEN, PREPARE, RENAME, or ERASE

605 Attempt to PREPARE or RENAME a file that already exists

606 Key length specified with OPEN differs from index file

607 Access violation during OPEN, PREPARE, RENAME, or ERASE

608 Associative key specification in PREPARE missing or invalid

609 Index key specification invalid in PREPARE

610 Invalid record length specified in OPEN or PREPARE

611 Attempt to rename a file to a different resource

612 Error during close

613 Unable to create file during PREPARE

614 Out of memory during OPEN, PREPARE, RENAME, or ERASE

701 File not open; operation attempted on closed file

702 Attempt to WRITE to read-only file

703 Attempt to randomly access a variable length record file; only a fixed length record file can be randomly accessed

704 Invalid tab value used with READ, UPDATAB, or WRITAB

705 Attempt to access a file that is off-line or otherwise not available

Page 59

706 Error during WRITE

707 Access violation during READ, WRITE, or WRITAB

708 Attempt to WRITE or INSERT with null index key

709 Attempt to WRITE or INSERT a duplicate key

710 Attempt to update to invalid file position

711 Attempt to update a compressed file

712 Associative read key specification error

713 Associative read insufficient key(s)specified

714 Invalid associative index position for READKG or READKGP

715 Attempt to read a record that is too small

716 Attempt to read, write or update a record that is too large

717 Invalid data file position for INSERT or DELETE

718 Attempt to perform an indexed READ with null key and invalid position

719 Attempt to INSERT two identical keys for the same record

720 Attempt to READ a record that does not exist or was deleted

721 Specified key too long in READ, WRITE, INSERT, DELETE or DELETEK

Page 60

Appendix A. Sample DBD File
Here is a sample DBD file:

<dbcfsdbd>
 <access>ALL</access>
 <table>
 <name>IM</name>
 <description>Item Master File</description>
 <textfile>ITEM.TXT</textfile>
 <textfiletype>standard</textfiletype>
 <indexfile>ITEM1.ISI</indexfile>
 <indexfile>ITEM2.ISI</indexfile>
 <indexfile>ITEM3.ISI</indexfile>
 <indexfile>ITEM.AIM</indexfile>
 <fixedlength/>
 <columns>
 <c>
 <n>ITEM</n>
 <t>CHAR(6)</t>
 <d>Our item number</d>
 </c>
 <c>
 <n>VEND</n>
 <t>CHAR(6)</t>
 <d>Vendor code</d>
 </c>
 <c>
 <n>VITM</n>
 <t>CHAR(12)</t>
 <d>Vendor item number</d>
 </c>
 <c>
 <n>CLAS</n>
 <t>CHAR(4)</t>
 <d>Item class</d>
 </c>

Page 61

 <c>
 <n>SEQN</n>
 <t>CHAR(3)</t>
 <d>Sequence number</d>
 </c>
 <c>
 <n>MNFR</n>
 <t>CHAR(30)</t>
 <d>Manufacturer</d>
 </c>
 <c>
 <n>MITM</n>
 <t>CHAR(15)</t>
 <d>Manufacturer item number</d>
 </c>
 <c>
 <n>DESC</n>
 <t>CHAR(60)</t>
 <d>Description</d>
 </c>
 <c>
 <n>LIST</n>
 <t>NUM(9,3)</t>
 <d>List price</d>
 </c>
 <c>
 <n>COST</n>
 <t>NUM(9,3)</t>
 <d>Cost</d>
 </c>
 <c>
 <n>LPDT</n>
 <t>CHAR(6)</t>
 <d>Last purchase date</d>
 </c>
 <c>
 <n>LPPR</n>

Page 62

 <t>NUM(9,3)</t>
 <d>Last purchase price</d>
 </c>
 <c>
 <n>HAND</n>
 <t>NUM(6,0)</t>
 <d>On hand</d>
 </c>
 <c>
 <n>QTYO</n>
 <t>NUM(6,0)</t>
 <d>On order</d>
 </c>
 </columns>
 </table>
 <table>
 <name>VM</name>
 <description>Vendor Master File</description>
 <textfile>VEND.TXT</textfile>
 <indexfile>VEND.ISI</indexfile>
 <fixedlength/>
 <columns>
 <c>
 <n>VEND</n>
 <t>CHAR(6)</t>
 <d>Vendor code</d>
 </c>
 <c>
 <n>NAME</n>
 <t>CHAR(30)</t>
 <d>Vendor name</d>
 </c>
 </columns>
 </table>
</dbcfsdbd>

Page 63

Appendix B. Log File Format

The change logging feature of DB/C FS is implemented at the data record level. This feature logs all write, update and delete
activity for files that are changed via both SQL and file I/O interfaces. Information about indexes (.isi and .aim) is not logged; it can
be inferred from the value of the records being updated and written. Logging information from all connections is written into a
single log file. Each change (write, update or delete) is written to the log file as a single XML element.

Log information is written to the log file whose name is specified in the configuration file. When the active log file is changed to an
archive log file, it is renamed and a new log file is created while DB/C FS is running. This change happens either by running dbcfs
with the -g option, or by running dbcfsadm with the -g option. dbcfsadm can be executed using the UNIX cron command or similar
to automatically create archives.

The archive log file name is the same as the log file name except it has an underscore (_) followed by a 16 digit timestamp appended
to the end of the file name. The file extension will be the same.

The following XML elements are written to the log file:

<start>timestamp</start> (at dbcfs startup, dbcfsadm –g or dbcfsadm –l)

<stop>timestamp</stop> (at dbcfs shutdown, dbcfsadm –g or dbcfsadm -x if logging is active)

<connect>
 <c>connection handle</c>

<user>user name</user>
<database>database name</database>

</connect>

<disconnect>
 <c>connection handle</c>
</disconnect>

<open>
 <c>connection handle</c>

<f>file handle</f>
 <name>data file name</name>

Page 64

 <user>user name</user>
 <stamp>time stamp</stamp>

</open>

<close>
 <f>file handle</f>
 <name>data file name</name>
 <user>user name</user>

<stamp>time stamp</stamp>
</close>

<w>
 <f>file handle</f>
 <name>data file name</name>
 <user>user name</user>
 <stamp>time stamp</stamp>

<n>new data written to end of file</n>
</w>

<d>
 <f>file handle</f>
 <name>data file name</name>
 <user>user name</user>
 <stamp>time stamp</stamp>
 <o>data that is deleted</o>

</d>

<u>
 <f>file handle</f>

<name>data file name</name>
 <o>old data that is over written</o>
 <user>user name</user>
 <stamp>time stamp</stamp>

Page 65

 <n>new data that is over writing the old data</n>
</u>

The log file will contain a continuous stream of data with no record delimiters.

Page 66

	Chapter 1. Installation and Operation
	1.1 Introduction
	1.2 Software
	1.3 Installation of server and utilities software
	1.4 Installation and setup of the Windows ODBC driver
	1.5 Installation and setup of the unixODBC driver
	1.6 Installation and setup of the JDBC driver
	1.7 Running DB/C FS server
	1.8 Running DB/C FS server as a Linux background process
	1.9 Installing and running DB/C FS server as a Windows service
	1.10 Considerations for using encryption
	1.11 The DB/C FS server adminstration program
	1.12 ODBC considerations
	1.13 JDBC considerations
	1.14 Installation of the Eclipse configuration editor

	Chapter 2. Configuration Files
	2.1 General syntax
	2.2 Configuration file
	2.3 Name and password file
	2.4 Data dictionary file

	Chapter 3. SQL Syntax
	3.1 Overview
	3.2 SQL data manipulation statements
	3.3 SQL data definition statements

	Chapter 4. Java Client Programming Interface
	4.1 Overview
	4.2 Connection
	4.3 File

	Chapter 5. .NET Client Programming Interface
	5.1 Overview
	5.2 Connection
	5.3 File
	5.4 Util
	5.5 ConnectionException
	5.6 FileException

	Chapter 6. C API
	Chapter 7. Programming Interface Error Codes
	Appendix A. Sample DBD File
	Appendix B. Log File Format

