
DB/C DX 101
Guide and Reference

January 2023

Copyright Portable Software Company 2023

Table of Contents
 

DB/C Language Fundamental Concepts 9
Using Advanced DB/C Language Features 18
Writing GUI Programs 29
Compiling and Running Programs 34
Runtime Properties 43
SQL 53
Communications 56
Writing Portable Programs 61
Windows Considerations 62
Linux Considerations 65
C Interface 70
File Formats 80
DB/C Programming Language General Information 85
Compiler Directives 94

Conditional Compiler Directives 94
define 96
equate 97
include 98
liston, listoff 99

Definition Statements 100
Character Variables 101
Numeric Variables 102
List Variables 103
Record Variables 104
File Variables 105
Classes, Object and Inherited Variables 107
Special Variables 108
Address Variables 109
Global Variables 110
Common Variables 111
Label Variables 112
verb, cverb 113

Executable Statements 116
add 117
and 118
append 119
beep 120
branch 121
bump 122

call 123
ccall 124
chain 125
change 126
charrestore 127
charsave 128
check10 129
check11 130
chop 131
clear 132
clearadr 133
clearendkey 134
clearlabel 135
clock 136
close, closeall 138
cmatch 139
cmove 140
comclr 141
comctl 142
comopen, comclose 143
compare 144
compareadr 145
comtst 146
comwait 147
console 148
count 149
debug 150
delete 151
deletek 152
destroy 153
disable 154
display 155
divide 161
draw 162
edit 164
empty 166
enable 167
endset 168
erase 169
execute 170
extend 171
external 172
File Manipulation Statements 173
filepi 174
fill 175
flagrestore 176

flagsave 177
flusheof 178
for, break, continue, repeat 179
format 180
fposit 182
get 183
getcolor 184
getcursor 185
getendkey 186
getglobal 187
getlabel 188
getmodules 189
getname 190
getobject 191
getpaperbins 192
getpapernames 193
getparm 194
getposition 195
getprinters 196
getwindow 197
goto 198
hide 199
if, else, endif 200
insert 201
keyin 202
lcmove 206
lenset 207
link 208
load 209
loadadr 210
loadlabel 211
loadmod 212
loadparm 213
loop, break, while, until, continue, repeat 214
make 216
makeglobal 217
makevar 218
match 219
Miscellaneous Arithmetic Statements 220
mod 221
move 222
moveadr 223
movefptr 224
movelabel 225
movelength 226
movelptr 227

movelv 228
movesize 229
movevl 230
multiply 231
nformat 232
noeject 233
noreturn 234
not 235
open 236
or 238
pack 239
packlen 240
pause 241
perform 242
ploadmod 243
popreturn 244
prepare 245
print 247
pushreturn 250
put 251
putfirst 252
query 253
read 254
readgplk 257
readkg 258
readkglk 259
readkgp 260
readkp 261
readkplk 262
readks 263
readkslk 264
readlk 265
recv 266
recvclr 267
release 268
rename 269
replace 270
reposit 271
reset 272
resetparm 273
retcount 274
return 275
rollout, clientrollout 276
rotate 277
routine, lroutine, endroutine 278
scan 279

scrnrestore 280
scrnsave 281
scrnsize 282
search 283
send 284
sendclr 285
set 286
setendkey 287
setflag 288
setlptr 289
setnull 290
sformat 291
show 292
shutdown 293
sound 294
splclose 295
splopen 296
splopt 298
sqlcode 299
sqlexec 300
sqlmsg 301
squeeze 302
staterestore 303
statesave 304
statesize 305
stop 306
store 307
storeadr 308
storelabel 309
subtract 310
switch, case, default, endswitch 311
tabpage 312
test 313
testadr 314
testlabel 315
trap 316
trapclr 318
traprestore 319
trapsave 320
trapsize 321
trim 322
type 323
unlink 324
unload 325
unlock 326
unpack 327

unpacklist 328
updatab 329
update 330
wait 331
weof 332
winrestore 333
winsave 334
winsize 335
write 336
xor 338

GUI Programming Reference 339
Creation of Windows and Timers 339
Operation of Windows and Timers 340
Creation of Resources 342
Operation of Resources 351
Messages 360
Application Device 364
Clipboard Device 365
Fonts 365
TIFF, GIF, PNG, and JPEG File Support 366

Error Codes and Messages 367

DB/C Language Fundamental Concepts

This chapter covers fundamental concepts of the DB/C programming language. The information in this
chapter is intended for the programmer who is new to DB/C.

Statement Structure
Programs consist of statements which are lines of text. All statements have the following general format:
label verb operands comment
The label is optional, but if it exists, it must start in the first column of the line. Blanks and tabs separate
the label, verb, operands, and comment.
Here is an example of a complete DB/C program:
password char 8
 keyin *es, "Enter the password:", *eoff, password
 match "87654321" to password
 stop if not equal
 chain "menuprog"

In the first statement, the label name is password. This statement defines an eight-character variable
named password. The following statements do not contain a label. The statement with the verb name
keyin, simply called the keyin statement, waits for a password to be entered at the keyboard. *es is a
control code that causes the screen to be erased and *eoff is a control code that causes characters entered
on the keyboard to not be echoed to the screen. The match statement tests for a valid password. If the
password is invalid, the stop statement causes execution to cease. If the password is valid, the chain
statement ends the current program and starts the program named menuprog.

Variables
A variable is defined by a data definition statement. A data definition statement may be located at any
place in a program. The only restriction is that a variable must be defined before any executable
statements which use that variable.
The maximum number of characters that a variable name can contain is 31. The first character must be an
alphabetic character (A-Z, a-z) or a dollar sign ($). The characters after the first character may be any
alphanumeric character (A-Z, a-z, 0-9), a dollar sign ($), a period (.), an underscore (_), or an "at" sign
(@).
Three common types of variables are character variables, numeric variables, and file variables.

Character variables
A character variable contains a string of characters. A character variable is defined by a char or init
statement. The char statement defines a character variable and initializes it with blanks. The init
statement defines a character variable and initializes it with the characters specified.

Here are two examples of character variable definitions:
name char 30
company init "DB/C Software Company"

The first variable, name, can hold up to 30 characters. The second variable, company, can hold up to 21
characters. This is inferred from the length of its initial value: which is DB/C Software Company.
A character variable has several attributes associated with it. These attributes are: the physical length, the
physical string, the form pointer, the length pointer, the logical string, and the logical length. The physical
length refers to the largest number of characters that can be stored within a character variable. It is
established when the variable is originally declared. For instance, if a variable is defined as char 8, then its
physical length is 8.
The string of characters stored in a character variable is referred to as the physical string of the variable.

Page 9

DB/C maintains two pointers with each character variable: the form pointer and the length pointer. Each
pointer is a number that refers to a character position in the variable. For example, if the form pointer of a
certain variable has a value of 9, then the form pointer refers to the character in the ninth position in the
variable.
The value of the form pointer can never exceed the value of the length pointer. The value of the length
pointer can never be greater than the physical length. The form pointer and the length pointer may have
the value zero.
The form pointer and length pointer define the variable's logical string. The logical string of a character
variable is the string of characters from the character pointed to by the form pointer through the character
pointed to by the length pointer, inclusive. In other words, the form pointer points to the first character of
the logical string and the length pointer points to the last character of the logical string. If the form
pointer is zero, the logical string is considered to be null, even if the length pointer is non-zero.
The logical length of a character variable is the length of its logical string. If the form pointer is zero, then
the logical length is zero regardless of the value of the length pointer. The logical length can be calculated
by the following formula:

logical length = length pointer - form pointer + 1
For example, if a variable is defined like this:
name init "ABCDEFGHIJ"

The physical length of name is 10. The physical string contains the characters ABCDEFGHIJ. If the form
pointer is 2 and the length pointer is 5, then the logical string is BCDE and the logical length is 4.

Numeric variables
A numeric variable contains a valid DB/C number. The characters that make up a valid DB/C number
are always right justified in the variable and leading zeros are always suppressed. If the number is
negative, a minus sign is stored on the left side of a number. The minus sign is always immediately to the
left of the most significant digit, or to the left of the decimal point if there is no significant digit left of the
decimal point.
Here are examples of valid and invalid numbers:

Valid: "123" "-123" " -123" "-.05"
 Invalid:"123 " (trailing blank) "- 123" (embedded blank) "123." (no digit after .)

"+123" (+ invalid) "1,234" (, invalid)
Numeric variables may be defined by the num statement. The num statement defines the format of a
numeric variable. The num statement can also be used to assign an initial value to a variable. To initialize
a numeric variable, a numeric value enclosed in quotes is placed to the right of num verb. The size and
format of the variable are inferred from the initial value.
Here are some examples of numeric data variable definitions:
n1 num 3
cost num 3.2
n2 num "-66"
maxprice num "250.00"

The first variable, n1, is defined to hold three decimal digits. A minus sign takes the space of one digit.
Therefore, n1 can hold values ranging from -99 through 999. cost contains five digits and a decimal point.
Unlike the minus sign, the position of the decimal point remains fixed. The decimal point takes up one
character position. Data is always aligned around the decimal point.
cost can hold three digits to the left of the decimal point and two digits to the right. Therefore, cost can
hold values ranging from -99.99 through 999.99.
n2 is defined as a num 3 variable. This is inferred from the initial value assigned to the variable.
maxprice is defined as a num 3.2 variable. This is inferred from the initial value assigned to the variable.

Page 10

A numeric variable can be initialized larger than the length of its initial value by adding leading zeros or
spaces to the number enclosed in quotes. In either case, the variable is initialized with leading blanks
instead of zeros.
For example:
n3 num " 10"
n4 num "000001"

n3 is a num 3 variable initialized to the value 10. n4 is a num 6 variable initialized to the value 1.

File variables
A logical file is defined by a file variable. To use an actual physical file in a program, the file must be
linked to a file variable. Once the link is established, the file variable is used to refer to the file for all
subsequent accesses. The link is established by the execution of an open statement. A file variable that is
linked to a physical file is said to be open. When a file variable is open, data can be read from or written
to the file. A file variable that is not linked to a file is said to be closed. When a file variable is closed, data
cannot be read from or written to the file.
A direct file variable is used to allow access to a data file through the sequential or random access
methods. It is defined by the file statement.
An indexed sequential file variable is used to allow access to an index file and its associated data file
through the indexed sequential access method (ISAM). It is defined by the ifile statement.
An associative index file variable is used to allow access to an index file and its associated data file
through the associative index access method (AIM). It is defined by the afile statement.
For example:
names ifile fixed=80, keylength=8

This ifile statement defines names as a logical name for a file that can be accessed with the indexed
sequential access method.

Flags
There are four flags that are used to control program execution. The flags have two states: set and clear.
Most statements change the state of one or more flags, reflecting their results.
The flags affected depend on the statement. The flags are: equal, less, over, and eos. over is an
abbreviation of "overflow". eos is an abbreviation of "end-of-string". zero is a synonym for equal.
The operation of certain statements (such as the goto statement) depends on the status of the flags.

The move Statement
The move statement is the basic assignment operation of the DB/C language. The move statement copies
character variables, numeric variables, and literal values to character and numeric variables.
Here are some examples:
a init "AAA"
b init "BBBBB"
c num 3.2
d char 10
 move a to b
 move "-22" to c
 move c to d
 move "X" to b

The first operand in a move statement is called the source. The second operand is called the destination.
Typically the source is moved to the destination, but several rules govern the move:

1. If the source is a character variable, then the characters in its logical string are moved.

Page 11

2. If the destination is a character variable, then characters are moved into the destination variable
starting at the first character. The destination's form pointer is set to one and length pointer is set to
the number of characters moved. If no characters are moved, the destination form pointer and length
pointer are both set to zero.
3. If the destination is numeric, then the source must be a valid number. If it is not, the numeric
destination variable is not changed.

The move statement affects the flags. If both source and destination are numeric, then the equal, less, and
over flags are affected. The equal flag is set if the value in the destination is zero; otherwise it is cleared.
The less flag is set if the value in the destination is negative; otherwise it is cleared. The over flag is set if
any digits or the minus sign was truncated on the left; otherwise it is cleared. If neither the source nor the
destination is numeric, the eos flag is the only flag affected. The eos flag is set if characters were lost
because they could not fit into the destination; otherwise it is cleared.

Character Variable Manipulation
The reset statement causes the form pointer of a character variable to be changed.
The cmove statement causes one character to be stored at the character position pointed to by a character
variable's form pointer.
For example:
x init "ABC"
 reset x to 2
 cmove "Z" to x
 reset x

The first reset statement sets the form pointer of x to 2. The cmove statement replaces the character B with
a Z. The second reset sets the form pointer of x to 1.
The bump statement increments a character variable's form pointer.
The movefptr statement moves the value of a character variable's form pointer to a numeric variable.
The cmatch statement compares the form pointed characters of two variables. If the characters match, the
equal flag is set. If the second operand is less than the first operand, the less flag is set. If the form pointer
of either variable is zero,the eos flag is set.
The match statement is similar to the cmatch statement, except that the logical strings of two character
variables are compared.
For example:
x init "ABCDE"
n num 5
 bump x by 2
 cmatch "A" to x
 movefptr x to n
 match "CDE" with x

In this example, the bump statement causes the form pointer of x to be incremented from 1 to 3. The
cmatch statement clears the equal, less and eos flags. The movefptr statement moves 3 to the variable n.
The match statement sets the equal flag.

The goto Statement
The goto statement causes program execution to continue at another location in the program. There are
two types of goto statements: unconditional and conditional.
An unconditional goto statement causes execution to continue at the statement specified by the execution
label.

Page 12

With the conditional goto statement, program execution continues at the statement specified by the
execution label only if the condition following the if is true. If the condition is false, program execution
continues with the statement that follows the goto statement.
The clause following the if may be an expression, a flag, or a function key specification.
Here is an example of an unconditional goto statement:
 goto label1
 display "Processing"
label1 display "Done"
 stop

Execution continues at label1 unconditionally and the first display statement does not execute.
Here is an example of a conditional goto statement:
 goto label1 if F1
 display "F1 not pressed"
 goto label2
label1 display "F1 pressed"
label2 stop

If the F1 key has been pressed before this code executes, then the condition in the first goto statement is
satisfied (if F1). As a result, execution continues at label1 and the message F1 pressed is displayed.
If the F1 key has not been pressed, then the condition in the first goto statement is not satisfied and
execution continues with the next statement, which displays the message F1 not pressed.

The if, else, and endif Statements
The if, else, and endif statements conditionally control execution of subsequent statements. The if
statement tests whether a condition is true or false. If it is true, execution continues with the next
statement. Otherwise, execution continues after the else statement, or after the endif statement if an else
statement does not exist.
Here is an example:
 if over
 display "Over flag is set"
 endif

If the over flag is clear, the statement following the endif statement is the next statement executed. If the
over flag is set, the condition specified in the if statement is true and the message Over flag is set is
displayed.
Here is another example:
score num 3
 keyin *es, "Enter your score:", score
 if (score = 100)
 display "A perfect score"
 else if (score < 0 or score > 100)
 display "An invalid score"
 else if (score >= 70)
 display "A passing score"
 else
 display "A failing score"
 endif

The display Statement
The display statement performs functions such as displaying characters on the computer screen,
positioning the cursor, and setting display attributes.

Page 13

The list of operands after the display verb defines the operations to be performed. The list of operands
includes data elements (such as character variables, numeric variables, and literals) and control codes.
The data elements contain the information to be displayed on the computer screen. The control codes
modify the manner in which the data is displayed. All control codes begin with an asterisk.
Here is an example of the display operation:
 display *es, "This is an example"

The *es control code erases the screen and sets the cursor position to the upper left corner of the screen.
Next, the string of characters
This is an example is displayed. After the characters are displayed, the cursor is positioned to the right of
the last character displayed.
The cursor position designates the position on the display screen where the next character will be
displayed. At times a flashing rectangle or underscore may appear at the cursor position. This rectangle
or underscore is called the cursor.
The upper left corner of the screen is cursor position 1:1.
The following example displays Hello at the tenth position on the third line:
 display *p=10:3, "Hello"

When a character variable is encountered in the list of operands, the characters from the first physical
character of the variable through the character pointed to by length pointer are displayed. Blanks are
displayed for the number of characters that are between the length pointer and the maximum length
of the variable. In this way, the number of characters displayed is equal to the maximum length of
the character variable.
This example displays XYZ followed by two blanks:
x init "ABCDE"
 move "XYZ" to x
 bump x
 display x

Note that even though the form pointer of x is 2, the first three characters are displayed followed by two
blanks.
When a numeric variable or literal is encountered in the list of operands, its characters are displayed
starting at the current cursor position.

The keyin Statement
The keyin statement is similar to the display statement, but it also accepts keystrokes that are typed on
the keyboard.
Most display control codes work the same way with a keyin statement.
When a variable is encountered in a keyin operand list, the cursor appears at the current cursor position
and the program waits for characters to be typed on the keyboard. As each character is typed, it is
displayed and the cursor advances one position to the right.
When a character variable is encountered in the operand list, each character typed at the keyboard is
placed into the variable starting at the first character position. When the ENTER key is pressed, the keyin
operation for that variable completes. If more characters are entered than will fit in the character variable,
only those characters that will fit are accepted. If the user presses the ENTER key without typing any
characters, then the form pointer and length pointer of the variable are set to zero.
When a numeric variable is encountered in the operand list, only characters that comprise a valid DB/C
number that will fit in the variable may be entered. When the ENTER key is pressed, the keyin operation
for that variable completes and the characters entered are moved to the numeric variable. The format of
the numeric variable is preserved. For example, if the user attempts to enter 123.456 into a numeric
variable with a 4.2 format, the number 123.45 is moved to the variable with one leading space. The 6 is
lost. If the user presses the ENTER key without typing any characters, the numeric variable is set to zero.

Page 14

Here is an example that uses both the display and keyin statements:
name char 30
 display *es, "Enter your first name: "
 keyin *p=24:1, name
 display *p=1:3, "Hello, ", name

The screen would look like this:
Enter your first name: Fred
Hello, Fred

File Handling
DB/C supports three methods of file access: the direct access method (random or sequential), the indexed
sequential access method (ISAM), and the associative index method (AIM).
A file variable is used with the direct access method. An ifile variable is used with ISAM. An afile variable
is used with AIM.
A file is a set of data records that exists outside of the DB/C program. Before a program can process data
that is stored in a file, it is necessary to connect a file variable to the file.
One file is used with the direct access method: a data file. Two files are used with the ISAM or AIM access
methods: a data file and an index file. A data file contains records of data. An index file contains the
information necessary to find records in a data file. An index file also contains the name of the
corresponding data file. The index file is called an ISAM index file or an AIM index file, depending on the
access method used.

Direct access
Sequential access provides a straight forward way to read and write files. Sequential access simply means
that records are written one after another to the data file. Records are read from the data file in the same
sequence that they were written to the file - one record after another. With sequential access, records may
be accessed consecutively, either forward or backward. Sequential files are used when there is no
requirement to access the data by record number or by key.
Random access allows reading or writing of fixed-length records by record number. Data files with
varying length records can not be accessed randomly. DB/C assigns a non-negative integer number to
each record in the file. A record can then be accessed by specifying its assigned number. Record
numbering begins with zero. This means that the first record in the file is record number zero, the second
record is record number one, etc.

ISAM
The indexed sequential access method (ISAM) allows a program to locate specific records based on a key
value. This method uses a data file and an index file. The data file contains records that have key values.
The index file contains the name of the data file, the key values, and the file positions necessary to
associate the keys with the records in the data file.
For example, assume there is a data file that contains four million records. Each record contains the name,
state of birth, and social security number of a person. The records are sorted alphabetically by the
person's last name.
If you need to find the record for someone by the name of Moe Howard, you can find it easily because the
data is sorted alphabetically by last name. However, the task becomes much more difficult if you need to
find the record for the person whose social security number is 000-536-8912. You would have to read
every record sequentially until you find the right one. On the average, you would have to read two
million records. Indexing the file by social security number is a better solution.
For every record in the data file, a record is written to another file - the index. Each of these index records
contains the social security number, also known as the key data. Each index record also contains a pointer
that indicates where in the data file the record with that social security number is located. If this index file
is arranged by social security number, then you have the means to find data records quickly. You can look
up a key in the index in order to establish the exact position of the desired record within the data file.

Page 15

ISAM does all this for you. ISAM gives you the ability to read data records in the same order as the index
file. In this example, you can create a report that has every record from the data file printed in social
security number order.
Because the index files are logically separate files, more than one index file can be associated with a single
data file. In this example, there could be a state of birth index along with the social security number
index. Both indexes would refer to the same data file.
When a change is made to a key field in a data file record, any related index files will be inaccurate. All
indexes must be updated whenever a key field is changed in the data file.

AIM
The associative index method (AIM) is used to find records when only partial key information is known.
AIM is used to read records that meet a specific set of criteria. As with ISAM, the data file contains
records that have key values. The associative index file contains the name of the data file and the key
information that is used to retrieve records from the data file.
For example, assume that you are designing a system for a customer service department. The customer
file contains 200,000 records. Customers call the department frequently to inquire about the status of their
orders. Unfortunately, most customers do not know their customer ID numbers. AIM can be used in the
customer service system to quickly determine the ID number for a particular customer.
When a customer calls, he is asked for his name and zip code. Suppose Sue Smith calls from the 01243 zip
code and does not know her customer ID number. If you only had ISAM at your disposal, you could
search for all the customers in the 01243 ZIP code area, but that would likely yield too many records to be
of any use. Similarly, searching under the name Smith would not be helpful.
AIM can narrow the search and help you find Sue Smith in the customer file. With AIM, you can
construct a search that stipulates that the character strings Sue and Smith must both exist somewhere in
the name field, and that ZIP code must be 01243.
Such a search could yield the following records:

The user viewing these records can quickly determine that customer ID 10036 is the correct customer.
Note that the search arguments Sue and Smith appear in every name field, but not in any particular
location.
Records are selected by specifying a match pattern. This match pattern can contain a string of characters
in one or more fields of a record. Only those records that satisfy the match pattern are retrieved. The data
contained in the match pattern is called the key data. The key data is used to match the data in the record
fields.
Key data may contain wild card characters. The wild card character can be used to specify a more flexible
search pattern. The positions in the key data corresponding to the positions of the wild card characters
may contain any character.
For instance, if you are looking for the name Carlson, but you are not sure of its spelling (it might be
Karlson or Carlsen), then you could employ wild card characters. The default wild card character is the
question mark. So, to conduct a general search that would result in every possible spelling, the key data
could be: ?arls?n.

Customer ID Customer Name Customer Zip Code

10036 Sue Smith 1243

91654 Sue's BlackSmithing 1243

62345 Smith Suede Company 1243

12634 Sue Smithers 1243

Page 16

Notice how the match pattern contains two wild cards. When the AIM read is executed, all names that
contain the character string arls and have an n in the last character position will match the key data,
regardless of the values of the first and sixth characters.
Unlike ISAM, AIM does not allow you to specify the order in which records are retrieved.

The print Statement
The print statement sends data to a printer or to a print file. The print statement is similar to the display
statement. The list of operands includes character variables, numeric variables, literals, and control codes.
The print statement places characters into a print line buffer. The print line is then transferred to the
printer or to the print file. The print position determines the horizontal placement of each character
within the print line buffer. The print position starts at position one (the far left character position) in the
print line. After each character is printed, the print position is set to the position to the right of the last
character printed.
When a character variable is in the operand list, characters are printed from the first physical character
through the character pointed to by the length pointer. A blank is printed for each character position after
the length pointer through the physical length of the variable. If the form pointer of the variable is zero,
then blanks are printed for the full physical length of the variable. Printing starts at the current print
position.
Here is an example of print used with a character variable:
string char 20
 move "ABCDEFGH" to string
 print string

ABCDEFGH is printed with 12 trailing blanks. The variable string is defined to be of length 20, with
form pointer of value one and length pointer of value eight. Therefore, 12 trailing blanks are printed for
each character in string after the length pointer.
Numeric variables and literals are handled the same way by the print statement. When a numeric
variable or literal is in the operand list, all characters are printed, including any leading blanks. Printing
starts at the current print position.
Here is another example:
 print *f, "Report of sales commissions":
 *n, *n:
 "Salesperson":
 *tab=25, "Amount"

The colon is used to continue the print statement on multiple program lines. The lines that follow the first
line are indented to increase readability.
*f is the form feed control code. It causes the printer to advance to the top of the next page and the print
position to be set to one.
*n is the new line control code. It causes the printer to advance one line and the print position to be set to
one.
*tab=25 is a tab control code. It is used to set the current print position within the print line. The *tab=25
in the fourth program line sets the current print position to the 25th column of the current print line.

Page 17

Using Advanced DB/C Language Features

Primary and Secondary Program Modules
A compiled DB/C program is called a module. A module can be primary or secondary. A module is a
primary module if it is the first program started by the DB/C run-time or if it is loaded and executed
using the chain statement. A module is a secondary module if it is loaded by the loadmod statement or
the ploadmod statement.
Program execution begins with the first statement of a primary module and can continue into secondary
modules by execution of goto, call, branch, perform, or user-defined verb statement.
Here is an example:
Program 1:
. This is the program started using the DBC command
 chain "first"

Program 2:
. This is the module named first
xlabel external
 loadmod "second"
 goto xlabel

Program 3:
. This is the secondary module named second.txt
xlabel routine
 display "Secondary module is executing"
 stop
 endroutine

The chain statement in Program 1 starts execution of a new primary module named first. The first
executable statement of the first program, the loadmod statement, loads a secondary module named
second. The goto statement causes execution to be transferred to the label xlabel in second. The message
Secondary module is executing is displayed and then the stop statement is executed.
Unlike the primary module, there can be multiple copies of a secondary module. Each copy is loaded by a
separate loadmod statement. Each copy of a secondary module is called an instance.
The loadmod statement is used to create and to switch between instances of secondary modules.
For example:
 loadmod "second<one>"
 loadmod "second<two>"

These two statements load two copies of the second module: <one> and <two>. The <two> instance is
the current instance. The current instance is the copy that becomes active by using a goto statement, call
statement, branch statement, perform statement, or user-defined verb statement to transfer execution into
the second module.
The unload statement is used to destroy one or all instances of a secondary module. The unload statement
can also unload all secondary modules.
Execution of a chain statement by the primary module or a secondary module unloads the previous
primary module and all secondary modules. The new primary module specified with the chain statement
then begins execution.
A module is a permanent secondary module if it is loaded by the ploadmod statement. The unload and
chain statements do not affect permanent secondary modules.

Page 18

External Labels
Each program execution label is local to the module in which it is compiled unless the label has been
specifically defined as a global (or external) label. A local label is unknown to other modules. A global
label is visible to other modules.
A label definition is made global by the routine statement.
The external statement causes a label reference to refer to a global label defined in another module.
Here is an example of the loadmod statement used with multiple instances:
Program 1:
. This is the mod1 module
lab1 external
lab2 external
lab3 external
 loadmod "mod2<first>"
 call lab1
 loadmod "mod2<second>"
 call lab2
 loadmod "mod2<first>"
 call lab3
 unload "mod2<second>"
 unload
 stop

Program 2:
. This is the mod2 module
var1 char 1
lab1 routine
 move "X" to var1
 return
 endroutine
lab2 routine
 move "Y" to var1
 return
 endroutine
lab3 routine
 display var1
 return
 endroutine

X is displayed as a result of executing the mod1 program.
In the mod1 program, lab1, lab2, and lab3 are defined as external labels be cause they are not found in
the mod1 program.
The first loadmod statement loads the program area and the data area of the mod2 program. Notice that
the name of the in stance is <first>. The lab1 routine is called and execution continues in the secondary
module. The letter X is moved to the variable var1 in the data area of the <first> module instance.
Execution returns to the mod1 program. The second loadmod statement loads the mod2 program again,
but notice that the name of the instance is <second>. A new copy of the data area is created. The lab2
routine then is called and execution continues in the secondary module. The letter Y is moved to var1 in
the data area of the <second> module instance.
Execution returns to the mod1 program. The third loadmod statement causes <first> to be made the
current instance of the mod2 program. The lab3 routine is called and execution continues in the
secondary module. The variable var1 from the data area of the <first> module instance is displayed. Its
value is X.

Page 19

Execution returns to the mod1 program. The first unload statement unloads the instance of the mod2
program called <second>. The second unload statement unloads all currently loaded secondary modules.

Address Variables
An address variable contains a pointer to another variable of the same type. After an address variable is
assigned a value (that is, an address of another variable), then the address variable may be used
interchangeably with the variable to which it points. In other words, references made to an address
variable work in the same manner as references made to the variable pointed to by the address variable.
An address variable is defined like any other variable, except it has an @ as its operand.
This example defines a character address variable:
var1 char @

Address variables are assigned pointer values by several different operations, including the moveadr
statement and the call statement with parameters.
The moveadr statement assigns the address of a specified source variable to an address variable.
Here is an example that uses the moveadr statement:
var1 char @
var2 init "Hello"
 moveadr var2 to var1
 display var1

Hello is displayed.
Access to variables is usually local to the current instance of a module. An exception is referring to a
variable through an address variable. Address variables may refer to variables in any instance of any
module.
Access across modules can be initiated by the call statement with parameters.
Here is an example using the call statement with parameters:
Program 1:
. This module is mod1
num1 num "1"
num2 num "2"
exlabel external
 loadmod "mod2"
 call exlabel using num1, num2
 display "num1=", num1, " num2=",num2

Program 2:
. This secondary module is mod2
anum1 num @
anum2 num @
exlabel routine anum1, anum2
 display "anum1=", anum1, " anum2=", anum2
 add anum1 to anum2
 return
 endroutine

When a routine statement is called by a call statement with parameters, the address of each variable in the
call list is moved into the corresponding address variable in the routine list. An implicit moveadr
operation is performed on each parameter.

Page 20

In mod1, exlabel is defined as an external label. It is used by the call statement. The addresses of the
variables num1 and num2 are moved into the address variables anum1 and anum2. The following is
displayed on the screen:
anum1=1 anum2=2
num1=1 num2=3

There is a special type of address variable called a typeless address variable. It is defined like this:
x var @

A typeless address variable contains a pointer to any other non-address variable. The moveadr statement
is used to load and store pointers in typeless variables.
Here is an example:
mmsg init "Hello"
x var @
y char @
 moveadr msg to x
 moveadr x to y
 display y

Hello is displayed.

Local Variable Scope
A variable defined within the scope of routine/endroutine statements is called a local variable. A local
variable is not usable after the scope-ending endroutine statement is encountered.
Here is an example of the definition and use of a local variable:
 goto start
r routine parm1
parm1 char @
var1 init "def"
 display parm1, var1
 return
 endroutine
var1 init "abc"
start call r using var1
 stop

In the example, the first var1 variable is only valid until the endroutine statement. An attempt to display
it after the start label would result in an undefined variable error during compilation. The program
displays abcdef.
There is one other thing to notice about this program. There is one exception to the general rule that all
variables must be declared before they are used. The exception is for parameters contained in a routine or
lroutine statement. In this case the parameter declaration may immediately follow the routine or lroutine
statement. The parameter parm1 in the example shows the usefulness of this exception.

User-Defined Verbs
The verb statement defines a user-defined verb. A user-defined verb may be used just like a regular DB/C
verb, except it executes an implicit call operation with parameters. The call is to a label that is the same as
the name of the user-defined verb.

Page 21

For example:
errmsg verb #cvarlit
password char 8
 loop
 keyin *es, "Enter password:", *eoff, password
 if (lengthptr password < 8)
 errmsg "Password must be 8 characters long"
 else if (password < > "plato!!!")
 errmsg "Invalid password"
 else
 break
 endif
 repeat
 chain "menu"
errmsg lroutine msg
msg char @
work1 char 1
 display *p=1:10, "*** ERROR ***", *p=1:11, msg
 keyin *p=1:12, "Tap ENTER to continue", work1
 return
 endroutine

The user-defined verb, errmsg, is defined by the verb statement. The #cvarlit operand means that one,
and only one, character variable or literal operand is required. The errmsg verb can then be used like any
other verb. It is used twice in the example.
There are three general classes of operands allowed with user-defined verbs. These operand classes are:
positional, non-positional, and keyword.
In the user-defined verb definition, the format of a positional operand is:

type
In the user-defined verb definition, the format of a non-positional operand is:

= type
In the user-defined verb definition, the format of a keyword operand is one of:

keyword
keyword = type
keyword = type:type
keyword = type:type:type
keyword = type:type:type:type
keyword = type:type:type:type:type

In the user-defined verb definition, positional operands precede non-positional and keyword operands.
There may only be one non-positional operand, but there may be zero, one, or more of the keyword or
positional operands.
The positional operand defines the syntax of the user-defined verb to require an operand of matching
type in that position. The order of the operands with the verb must match the order of the positional
operands in the user-defined verb definition.
The non-positional operand defines the type or types of operands that may be found in a comma
delimited list after the required (positional) operands. The key word operands define the keyword
operands and values that may be found in the same comma delimited list as non-positional operands.
Positional operands become the parameters of the call with parameters statement that is implicitly
created by a user defined verb. Non-positional and key word operands are accessed by getparm,
loadparm and resetparm statements.

Page 22

This example shows the use of non-positional and keyword operands:
doprint verb newline, p=nvarlit, =varlit
 doprint "line1", p=50, "at 50", newline, "line2", newline

doprint lroutine
keyword char @
var1 var @
char1 char @
num1 num @
vartype num 2
 loop
 getparm keyword, var1
 return if over
 if (formptr (keyword) = 0)
 type var1, vartype
 if (vartype=1)
 moveadr var1 to char1
 print char1;
 else
 moveadr var1 to num1
 print num1;
 endif
 else if (keyword = "NEWLINE")
 print *n;
 else if (keyword = "P")
 moveadr var1 to num1
 print *tab = num1;
 else
 display "ERROR"
 stop
 endif
 repeat
 endroutine

In the doprint user-defined verb definition, NEWLINE and P are key word operands. NEWLINE has no
values associated with it. P has one which must be a numeric variable or literal. The non-positional
operand may be a character variable, a numeric variable, or a literal.
The doprint routine consists of a large loop/repeat. Each iteration of this loop processes one parameter
from the calling list. Each parameter is returned by the getparm statement. When the getparm statement
sets the over flag, the end of the list of keywords and non-positional operands has been reached.

Object-Oriented Programming
The object-oriented features of DB/C are implemented with several different statements including
class, endclass, make, destroy and the object data definition statements.
The class statement is used to define a class. A class definition looks like this:
classname class definition, parent=classname, make=routinelabel, destroy=routinelabel
 endclass

where the parent, make and destroy operands are optional. The statements between the class and
endclass statements define the class. Variables that are outside of a routine, but inside of a class are called
class variables. If the operand field of a class variable starts with a single & character, it is an inheritable
class variable. If the operand field of a class variable starts with &&, it is an inherited variable definition.
Inherited variables do not need to contain variable length information, format information or correct
array size specification. All other information must be specified.

Page 23

When a class is to be used by a make statement, or implicitly by execution of a user defined verb
statement execution, the class must be defined with a class statement that does not contain the definition
keyword. Here is the syntax:
classname class module=charlit

If the class definition statement for the class being declared is contained in the same compiled module,
then the module=charlit operand is not specified. If the class definition statement is in another module,
then charlit specifies the name of the module in which it is found.
Methods are routines that are contained inside a class definition. When a method is to be used by a call
statement that exists outside the class definition the routine is defined in, it must be defined with a
method statement, like this:
methodname method

An object is a data type (char and ifile are other data types). An object variable is defined like this:
objectname object

The make and destroy statements instantiate (create) and destroy an object. Here is their syntax:
 make objectname prep classname with parmlist

 destroy objectname

The with parmlist operand is optional.
There are two ways to call a method defined in a class—with a call statement, or with a user defined verb.
Here is the syntax for calling a method with a call statement:
 call methodname:objectvariable with parmlist

The with parmlist operand is optional.
Here is a small example of how to define and use a class. This example is contained in a single source file.
. main program
person class
showperson method
person1 object
 display *es, "Create and destroy person demonstration"
 make person1 from person
 call showperson:person1
 destroy person1
 stop

. definition of person class
person class definition, make=newperson
name char 30
birthdate char 6

newperson routine
 keyin "Enter name: ", name, *n, "Enter date of birth: ", birthdate
 return
 endroutine

showperson routine
 display "Name: ", name, "Date of birth: ", birthdate
 return
 endroutine

endclass

Page 24

In the example, person1 is the name of the variable that will contain an object of the class person. An
object variable can contain an object of any class. The person class object is created by the make
statement. When we say created, we mean that a set of data variables of the class is created and its
reference is stored in the object variable. This is very similar to the DB/C concept of creating an instance
of a loadmod. In our example, the two variables, name and birthdate, are created and the reference to
their data area is stored in person1. The destroy statement removes the object (the data variables) and
makes any references to them (such as the reference in person1) invalid.
When the object is created, a special routine is called to help create the object. In our example, this routine
is called newperson. It is special because it is specified as the make method on the class definition
statement. Note the term "method". This is the object-oriented term for a routine that is contained in a
class. In our example, the person class has two methods, newperson and showperson. Note that in our
main program, we only had to declare the showperson method because it is the only method explicitly
used. The newperson method is called implicitly by the make statement. The make and destroy methods
are optional for a class. In our example, we don't have a destroy method.
The call to the showperson method is similar to a regular call statement except that the routine name is
followed by the object being referenced. A colon separates the method and the object variable. Note that
there could be more than one class containing a showperson method. At run-time, the class of the object
referred to by person1 is used to determine which showperson method is called. This is called
polymorphism.
The second way of calling a method is by defining the method as a user-defined verb. The method
statement is not used. When a user-defined verb defines a method, the first operand of the prototype list
on the verb statement must. be one of these forms:
 !make
 !make(classname)
 !method
 !destroy
 !transient(classname)

The !make forms cause an object to be instantiated (an implicit make statement occurs before the method
is called). The !destroy form causes an implicit destroy to occur on the object after the method is called.
The !transient form causes a temporary, unnamed object variable to be instantiated before the method is
called and then destroyed after the method returns.
The syntax for using the verb statement is similar to the syntax when using using a non-object oriented
user-defined verb. For a !transient user-defined form the syntax is the same. For the !make form without
the class name, the first operand after the verb is of this form:
 object-variable(classname)

All other forms, including the !make form with the class name, require the first operand to be:
object-variable

Here are some examples:
person class
newperson verb !make(person)
new verb !make
showinfo verb !method
kill verb !destroy
showhello verb !transient(person)
person1 object
 newperson person1
 kill person1
 new person1(person)
 showinfo person1
 kill person1
 showhello

Page 25

Note that polymorphism isn't possible with the !make(classname) and !transient(classname) forms.
Here is an example of using the DB/C user verb syntax to call a method. In our example, after the
showperson method statement in the main program, add the following line:
showperson verb

We can separate the class definition from the program that uses a class. In our example, let's assume the
main program will be in a source file called main.txt and the person class source code will be in the file
class1.txt.
The only change required is to change the class statement in the main program like this:
person class module="class1"

The module parameter defines the name of the file with a .dbc extension that contains the code which
defines the person class. Note the default extension is .dbc, just like for chain and loadmod. The file
class1.dbc is not a library, it is just a normal .dbc file created by DB/C language compiler. Multiple
classes can be defined in a single source file. Classes cannot be nested.
Inheritance is the most important object-oriented feature. As an example, let's assume we want to create a
new class called employee that inherits all of the features of the person class and adds some. The
employee class definition will be in a source file named employee.txt. Here is how we define it,
assuming that the person class is in a file named class1.dbc:
. definition of employee class
person class module="class1"
showperson method
employee class definition, make=newemployee, parent=person
salary num 6.2

newemployee routine
 keyin "Enter salary: ", salary
 return
 endroutine

showemployee routine
thisobj object @
getobject thisobj
 call showperson:thisobj
 display "Salary; ", salary
 return
 endroutine
 endclass

The main program looks like this:
. main program
employee class module="employee"
showemployee method
employee1 object
 display *es, "Create and destroy employee demonstration"
 make employee1 from employee
 call showemployee:employee1
 destroy employee1
 stop

Notice that the main program doesn't even know of the existence of a person class. When the make
statement executes, an employee class object is created. The parent operand of the employee class
definition statement specifies that a person object is also to be created and its variables are "merged" with
the variables defined in the employee class. After the variables are created, the person class make method
is called, after which the employee class make method is called. In the showemployee method, the
getobject statement is used to set the thisobj variable to contain a pointer to the object variable for this

Page 26

instance of this class. thisobj is then used in the call to the showperson method which is actually
contained in the parent class (that is the person class).
Variables can also be inherited. Inheritable class variables have a single & character as the first character
of the operand field on their declaration. Inherited class variables have && as the first characters of their
operand field. In addition, because they are fully defined in the ancestor class, size information is not
needed on inherited variables. Size information is the field size and the number of entries in each
dimension of an array. Other type information is required. Please note that inheriting variables from an
ancestor is optional. You only need to declare those variables in the new class that must be accessed
directly.
Here are some examples of inherited variable declarations. In the ancestor, the base declarations are:
numvar num &5.2
carray2 char &5[10,10]
arrayofptr num &[25]@
ptrtoarray num &@[]
file ifile &keylen=20, fix=200

In the child class, the inheriting declarations are:
numvar num &&
carray2 char &&[,]
arrayofptr num &&[]@
ptrtoarray num &&@[]
file ifile &&

Here is an example using the employee class:
. definition of employee class
person class module="class1"
employee class definition, make=newemployee, parent=person
salary num 6.2
name char &&
birthdate char &&

newemployee routine
 keyin "Enter salary: ", salary
 return
 endroutine

showemployee routine
 display "Name: ", name:
 "Date of birth: ", birthdate:
 "Salary: ", salary
 return
 endroutine
 endclass

Page 27

Here is an example of a transient user-defined verb:
. this is the class definition code
message class definition
errormsg routine text
text char @
 display *hd, "Error occurred: ", text, w=5, *hd, *el;
 return
 endroutine
 endclass

. this is the main program
message class module="message"
errormsg verb !transient(message), #cvarlit
 display *es, "Error message test program"
 errormsg "Unable to find file"
 stop

When the errormsg verb is executed, an unnamed object of class message is created, its make method is
called (in this example, there is none), and the method whose name is the same is the user verb is called.
When that method returns, the destroy method is called (in this example, there is none), the unnamed
object is destroyed and the program execution returns to the calling program. This is quite convenient for
execution of routines that do not need to have variables persist beyond their return.

Page 28

Writing GUI Programs

This chapter is a guide to writing graphical user interface (GUI) programs.

Variables
Four special types of variables are used in GUI programs. They are: device variables, resource variables,
queue variables, and image variables.

Device variable
A device variable is defined by the device statement. In GUI programs, windows and timers are
represented by device variables.

Resource variable
A resource variable is defined by the resource statement. In GUI programs, menus, dialogs, icons, and
toolbars are represented by resource variables.

Queue variable
A queue variable is defined by the queue statement. In GUI programs, a queue variable may be linked to
a window, timer, menu, or dialog. Messages that result from user actions (like mouse movements and
menu selections) are added to the queue.

Image variable
An image variable is defined by the image statement. An image variable contains a rectangular array of
pixels that constitute a picture or drawing. Image variables may be shown in windows.

Devices
A device variable represents a general purpose object. In GUI programming, a window is represented by
a device variable. The statements that operate on device variables are: open, prepare, close, link, unlink,
change, query, load, and store.
The following prepare statement creates a window and displays it on the screen. For example:
win1 device
 prepare win1, "window=window01, size=100:100, pos=10:10"

win1 is the device variable that is used to refer to the window named window01. size specifies the
horizontal and vertical size (in pixels) of the window. pos defines the horizontal and vertical position (in
pixels) of the window relative to the upper left corner of the screen.
The close statement destroys a window and erases it from the screen. For example:
 close win1

Resources
Resources are objects that are manipulated and linked with windows. The statements that operate on
resources are: open, prepare, close, show, hide, link, unlink, query, and change.
Here is an example that demonstrates window and resource creation:
dialog resource
window device
dlgdef init "dialog=dbox, size=100:150, h=40, v=80,":
 "defpushbutton=102:OK:20:10, h=10, v=30, edit=101::30"
 prepare window, "window=window01, size=100:100, pos=10:10"
 prepare dialog, dlgdef
 show dialog, window

The first prepare statement creates the window for this program. The second prepare statement creates
the dialog resource named dialog.
The first operand in dlgdef is dialog=dbox. dbox is the name of the dialog.

Page 29

The next operand is size=100:150. This operand specifies the size of the dialog box. The first value, 100, is
the horizontal size. The second value, 150, is the vertical size. These values are in screen pixels.
The next operand is h=40. This operand specifies the current horizontal position within the dialog box.
The 40 is the horizontal position in screen pixels. The v=80 operand designates the current vertical
position within the dialog box.
defpushbutton=102:OK:20:10 specifies the default push button control. A default push button is the push
button that is activated when it is clicked on or when the enter or return key is pressed. 102 is the item
number of the push button. OK is the text string that will be displayed in the push button. 20 is the
horizontal size of the push button in screen pixels. 10 is the vertical size of the push button in screen
pixels. The upper left corner of the push button control will be placed at the current position.
The next operands, h=10 and v=30, set the new current position within the dialog box.
The final operand is edit=101::30. This specifies an edit field control. 101 is the edit field control item
number. The second operand specifies the text string that will be displayed in the edit field. In this case,
no text string is specified, so the edit field control is initially empty. 30 is the horizontal size of the edit
field in screen pixels. The upper left corner of the edit field control will be placed at the current position.
The show statement displays the dialog box in the center of the screen.

Queues
A device or resource is linked to a queue variable by the link statement. This allows windows, menus,
and control boxes to send messages to the program through queues.
The get statement retrieves messages from a queue in the order that messages were placed in the queue
(that is, first in, first out).
The wait statement causes program execution to be suspended until a message is available. Execution
continues with the statement after the wait statement when a message is available.
Here is an example that demonstrates the use of the get and wait statements:
q1 queue size=20
msg char 20
 loop
 wait q1
 get q1; msg
 repeat

q1 is a queue variable that can hold 20-character messages. At the start of the loop, the program pauses
until q1 is non-empty. When a message is available, it will be moved to the variable msg. By default, q1
can hold a maximum of 32 entries.
Here is a complete example:
dialog resource
window device
msgqueue queue size=57
operands init "dialog=dbox, size=100:120, h=40, v=80,":
 "defpushbutton=102:OK:20:10, h=10, v=30, edit=101::30"
msg list
msgname char 8
msgtype char 4
msgitem num 5
msgdesc num 40
 listend
contents char 30
 prepare window, "window=window01, size=100:100, pos=10:10"
 prepare dialog, operands
 link dialog, msgqueue
 show dialog, window

Page 30

 loop
 wait msgqueue
 get msgqueue; msg
 if (msgname = "dbox " and msgitem = 102)
 query dialog, "status101"; contents
 break
 endif
 repeat

The list variable called msg consists of four variables: msgname, msgtype, msgitem, and msgdesc. These
variables constitute the four parts of a message sent by a window.
The queue statement contains the size operand which defines the size (in characters) of each queue entry
in msgqueue. In this example, the size of each message is 57 (eight characters for the resource name, four
characters for the type, five characters for the item number, and 40 characters for the description).
The character variable contents is used to receive the contents of the edit field control.
At the start of the loop, the program is suspended until msgqueue is non-empty. When a message is
available, the get statement retrieves it from the queue and places it in the list of variables specified by
msg.
By default, no messages are sent when a user types characters into the edit field control.
If the user presses the OK push button, a message is placed in msgqueue. After the get statement is
executed, the value of msgitem will be 102 because the push button was defined in the prepare statement
with the item number 102.
If the value of msgitem is equal to 102 (the push button was pressed), execution continues with the query
statement.
The query statement queries the status of the edit field control in the dialog resource. The result of the
query is moved to contents.
The result of a status query for an edit field control is the text value of the edit field. Thus, the query
statement moves the text from the edit field into the contents variable.
The break statement causes execution to continue with the statement that follows the repeat statement.

Images
An image variable defines a logical canvas for the draw statement to operate on.
The show statement displays an image in a window. The hide statement removes the image from display
in the window.
Here is a simple example:
screen device
imagevar image h=600, v=400, colorbits=8
 prepare screen, "window=window01, size=600:400, pos=10:10"
 show imagevar, screen, 21, 41
 draw imagevar; color=*blue, p=2:2, line=10:10

screen defines a window. imagevar defines an image with a size of 600 pixels by 400 pixels. Eight bits of
color information (256 colors) are contained per pixel.
The show statement makes imagevar visible on screen. The upper left corner of the image is displayed at
horizontal position 21 and vertical position 41 within window01.
In the draw statement, the color operand sets the current draw color to blue. The p operand sets the
current draw position. The upper left corner of an image is position 1:1. The line operand draws a blue
line from the current position to position 10:10. The new position is set to 10:10.

Page 31

The next example is a paint program. When the user presses the left mouse button and moves the mouse,
a line is drawn. The user can also press the right mouse button to change the draw color. Here is the
program:
c_black define 0
c_red define 255
c_green define 65280
c_yellow define 65535
c_blue define 16711680
c_magenta define 16711935
c_cyan define 16776960
c_white define 16777215
win device
image image h=640, v=480
qmsg list
name char 8
func char 4
item num 5
horz num 5
vert num 5
 listend
msgq queue entries=256, size=27
button num 1
color num " 1"
rgbcolor num 10[8], initial c_black, c_red, c_green:
 c_yellow, c_blue, c_magenta, c_cyan, c_white
 prepare win, "window=window01, size=640:480, pos=10:10"
 link win, msgq
 draw image; color=*blue, erase
 show image, win
 loop
 wait msgq
 get msgq; qmsg
 switch func
 case "RBDN"
 add 1 to color
 if (color > 8)
 move 1 to color
 endif
 case "LBDN"
 set button
 change win, "mouseon"
 draw image; color=rgbcolor[color]:
 p=horz:vert, dot
 case "LBUP"
 change win, "mouseoff"
 clear button
 case "POSN"
 if (button)
 draw image; line=horz:vert
 endif
 case "CLOS"
 stop
 endswitch
 repeat

The define statements assign RGB color values to the labels.
The variable qmsg defines the message that will be received when the user moves the mouse or clicks a
button.

Page 32

The message is made up of five variables: name, func, item, horz, and vert. These variables are the five
parts of a message sent by the window.
name will always be window01. Some of the possible values of func are:

LBDN = left button down
LBUP = left button up
RBDN = right button down
RBUP = right button up
POSN = mouse movement report
CLOS = window closed from system menu

item always contains zeros. horz and vert contain the current mouse position.
The queue statement contains two operands. The entries operand specifies the number of messages
allowed in msgq. The size operand defines the size (in characters) of each message. In this example, the
size of each message is 27 (eight characters for the device name, four characters for the function, five
characters that are always zero, five characters for the horizontal position, and five characters for the
vertical position).
The prepare statement creates a window. The link statement links the window with the message queue.
The show statement makes image visible in the win dow.
At the start of the loop, the program is suspended until msgq is non-empty. When a message is available,
the get statement retrieves it and places it into qmsg.
If func is equal to RBDN (the right button was pressed), then one is added to the value of color. In other
words, whenever the right mouse button is pressed, the draw color will change.
If func is equal to LBDN (the left button was pressed), the button variable will be set to 1. By default, only
button action messages are sent to the queue. The change statement is used to alter this. The change
statement that specifies "mouseon" causes all mouse movements to be reported by POSN messages.
Finally, the draw statement is used to draw one pixel in the current draw color at the draw position
specified by horz:vert.
If func is equal to LBUP (the left button was released), the button variable will be set to 0. The change
statement that specifies "mouseoff" turns off POSN mouse position messages.
The POSN (the mouse was moved) message will only be reported if the left button is pressed down. If
func is equal to POSN, the draw statement draws a line in the current draw color from the current draw
position to the position specified by horz:vert.
If func is equal to CLOS (close action), the program will stop.

Page 33

Compiling and Running Programs

DB/C DX programs are compiled, debugged and executed from the operating system command line and
from batch files and shell scripts. This chapter describes how to do this.

Compiling Programs
The executable program that compiles DB/C DX source programs is dbcmp. This program creates .dbc
object files from source programs.
Unless modified by the -8 or -9 command line option, the equate label named DBC_RELEASE is
predefined with the value 101 and the equate label name DBC_DX is predefined with the value 1.
The format of the dbcmp command line is:
dbcmp file1 [file2] [-c] [-d[=n]] [-e=name] [-err=del] [-f] [-h=string] [-i] [-j[r]] [-k] [-v]

[-l=libraryname] [-cfg=filename] [-n=n] [-o=filename] [-p[=filename]] [-r[=filename]] [-s]
[-t=filename] [-w=n] [-x] [-z] [-afile=keyword] [-file=keyword] [-ifile=keyword]
[-1] [-2] [-3] [-8] [-9]

file1 is the name of the source text file containing DB/C language statements. If the extension is
not specified, .txt is assumed. The search path for the source file is controlled with the
dbcdx.file.source runtime property.

file2 is the name of the output .dbc file. If file2 is not specified, file1 with an extension of .dbc is the
default. If file2 is specified without an extension, .dbc is assumed. The search and create path
for the output file is controlled with the dbcdx.file.dbc runtime property.

-c is the case insensitive option. Without this option, all source program labels are case sensitive.
If this option is specified, case is ignored.

-cfg=filename is the runtime properties file parameter. See the next chapter.
-d[=n] is the display compilation parameter. If specified, all lines from the source files are displayed

on the output device. Statistics are displayed at the end of compilation. If this parameter is in
the form of -d=n, then display of lines from the source files are suppressed until the program
counter reaches line number n. When the program counter exceeds n, each line is displayed
as with the normal -d parameter.

-e=name is the define equate label parameter. The equate label specified by name is defined for this
compilation and has a value of one.

-err=del is the delete .dbc file on error option. If this option is specified, if any compilation error
occurs, no .dbc file is created and any pre-existing .dbc is deleted. If this option is not
specified, an invalid .dbc is created if compilation errors occur.

-f is the formatted output parameter. This causes page formatting information, including
header in formation, page numbers, and page breaks to be displayed.

-h=string is the page header parameter. This parameter is only applicable if -f is specified.
-i is the display information parameter. If this parameter is specified, the source file name will

be displayed along with any errors or with the Compiled successfully message.
-j[r] is the share open mode parameter. The -j parameter causes the input file to be opened in

share read/write mode. The -jr parameter causes the input file to be opened in share read-
only mode.

-k is the check for odd comment parameter. If this parameter is specified, a warning message is
generated in the following cases: if a right-side comment exists on a statement that allows an
optional if and the if is not specified; and if a right side comment starts with a comma on any
statement. Both of these situations may be caused by simple typing errors, but are technically
correct programs.

Page 34

-l=libraryname is the library parameter. The compiler checks the specified library for the existence of each
include file. If the library does not exist or if the include file is not a member of the library,
then the default search mechanism is used. The -l parameter can be specified one, two, or
three times on the command line. The libraries are searched in the order they appear on the
command line.

-n=n is the number of lines per page parameter. This parameter is only applicable if the -f
parameter is also specified. If -n is not specified, the default number of lines per page is 56.

-o=filename is the options file parameter. filename is the name of a user-created file containing options. It is
useful when the number of options is too large to fit on one command line.

-p[=filename] is the printer output parameter. If filename is specified, then all compiler output is written to
that file. A -p parameter without filename is ignored.

-r[=filename] is the cross reference listing parameter. This parameter causes the compiler to create a cross
reference listing that is displayed at the end of compilation. It contains a table with the name,
definition, type, and usage of all variables. If filename is specified, then it is the name of the
DB/C DX sort utility that is used in creating the cross reference table. If filename is not
specified, then the default sort utility name is sort.exe in Windows and sort elsewhere.

-s is the statistics parameter. If specified, compilation statistics are displayed at the end of
compilation.

-t=filename is the source line translate parameter. This parameter causes the compiler to translate each
character of every source line. The translate table is contained in the file specified by filename.
This file is a binary file that is 256 bytes long. The first byte is the replacement for a character
with value 0, the second byte is the replacement for a character with value 1, etc.

-v is the verbose message display parameter. If this parameter is specified, the file includes and
a running line count are displayed in addition to the information displayed by -i.

-w=n is the page width parameter. This parameter is only applicable if -f is specified. If -w is not
specified, the default page width is 132.

-x is the external label parameter. If this parameter is specified, an external label definition may
occur after the first use of that label. The -x parameter causes programs to execute somewhat
more slowly than when -x is not specified.

-z is the debug parameter. This parameter causes a debug map file to be created in the same
directory as the .dbc file. The name of this file is file1.dbg. This file must exist for the debug
parameter on the runtime command line (-z) to work.

-afile=keyword is the associative index file type parameter. This parameter overrides the default file
type for an afile definition. If the -afile parameter is not specified, the standard DB/C file
type is the default. keyword specifies which file type is the new default type. Valid keywords
are: text, data, native, crlf, or binary.

-file=keyword is the file type parameter. This parameter overrides the default file type for a file
definition. If the-file parameter is not specified, the standard DB/C file type is the default.
keyword specifies which file type is the new default type. Valid keywords are: text, data,
native, crlf, or binary.

-ifile=keyword is the indexed file type parameter. This parameter overrides the default file type for an
ifile definition. If the -ifile parameter is not specified, the standard DB/C file type is the
default. keyword specifies which file type is the new default type. Valid keywords are: text,
data, native, crlf, or binary.

The -1, -2, and -3 parameters control how the include file names are used by dbcmp. They are mutually
exclusive.
-1 is the truncate end parameter. This parameter causes the file name in each include statement

to be truncated at the first slash. All characters in the file name following the slash (as well as
the slash itself) are not used. For example: inc abc/def is converted to inc abc.

Page 35

-2 is the period replacement parameter. This parameter causes the first slash in the file name in
each include statement to be changed to a period. For example: inc abc/def is converted to
inc abc.def.

-3 is the truncate beginning parameter. This parameter causes the file name in each include
statement to be truncated at the first period that follows the first slash. All characters in the
file name before the period (as well as the period itself) are not used. For example:
inc ab/de.ghi is converted to inc ghi.

-8 is the DB/C release 8 compiler compatibility parameter. This parameter causes the
DBC_RELEASE and DBC_DX equate label to be undefined, the syntax of the trap statement
with the queue operand to work as in DB/C release 8, and xif statement processing to work
as in DB/C release 8.

-9 is the DB/C release 9 compiler compatibility parameter. This parameter causes the
DBC_RELEASE equate label to be defined with the value 9, the DBC_DX equate label to be
undefined, and xif statement processing to work as in DB/C release 9.

Running Programs Without Smart Client
Compiled programs (.dbc files) are run by the program execution facility, commonly called the runtime.
The name of the runtime is dbc.exe in Windows and dbc elsewhere. There is an additional runtime for
Windows named dbcc.exe that does not allow GUI applications and can be run as a service (see Chapter
10).
The format of the runtime command line is:
dbc [file1] [-cfg=filename] [-l=libraryname] [-o=filename] [-z] [parameters]
file1 is the name of a .dbc object file to be run. If file1 is not specified, answer.dbc is assumed. If

file1 is specified without an extension, .dbc is assumed.
-cfg=filename is the runtime properties file parameter. See the next chapter.
-l=libraryname is the library parameter. When this parameter is specified, the libraryname file is searched

first for the name of the program object file. If the library does not exist or the file is not a
member of the library, then the default search mechanism is used. -l may be specified up to
16 times. If specified more than once, the order of search is from left to right on the command
line.

-o=filename is the options file parameter. filename is the name of a user-created file containing command
line options. It is useful when the number of options is too large to fit on one command line.

-z is the debug parameter. It makes the source code debugger available.
-zs=portnumber This is a special debug parameter that is used only for remote debugging.
parameters is one or more additional user-defined parameters used by DB/C programs. One or more

parameters may be specified. A parameter must start with an alphanumeric character.
There are a number of runtime properties that control the behavior of the runtime. The runtime properties
are contained in the DB/C DX runtime properties file. By default, the name of this file is dbcdx.cfg and it
is located in the current directory. The name of this file may be overridden with the -cfg command line
parameter or with the DBC_CFG environment variable. See the next chapter.

Running Programs With Smart Client
Compiled programs (.dbc files) can be run in a client/server mode called Smart Client. This feature
allows for remote execution of the user interface statements of DB/C programs. That is, for character
mode programs (those that use keyin and display statements), the client program of Smart Client (for
example dbcscc.exe) is connected to a process on a server that is executing the DB/C DX runtime (for
example dbc in Linux) via TCP/IP. For GUI programs, the Windows GUI Smart Client program
(dbcsc.exe) and the Java Smart Client program both implement the GUI user interface capabilities of the
DB/C program that is running on the DB/C DX runtime on the server as a process on Linux or on
Windows server.

Page 36

There is a 'keep alive' feature that is implemented between Smart Client server and client software. If the
TCP/IP connection between the client and server is broken or is unavailable for more than a minute, the
runtime will shut itself down.
Before the client software of Smart Client is started, the Smart Client server dispatcher must be running
on the server machine. The name of this program is dbcd.exe for Windows and dbcd elsewhere.

Starting the Smart Client Server Dispatcher
The syntax to start the Smart Client server dispatcher from the command line is:
dbcd [-dx=executable] [-port=nnn] [-sport[=nnn]] [-encrypt=option] [-cd=directory]
-dx=executable specifies an alternate name for the DB/C DX runtime that will be started when each client

connects. The default runtime for Windows is dbcc.exe and dbc elsewhere. The value of this
operand is the name of an executable file.

-port=nnn specifies the TCP/IP port number for the initial connection with the Smart Client dispatcher
(dbcd). The default value is 9735.

-sport[=nnn] specifies the port number that the Smart Client uses for the secondary connection to the
dbc task started by the dispatcher. If the port number (nnn) is not specified, the dispatcher
will dynamically allocate one. See the -localport option of dbcsc for more information. If
-sport is specified, the Smart Client acts as the TCP/IP client for both initial and secondary
connections. If -sport is not specified, the Smart Client acts as the TCP/IP server for the
secondary connection.

-encrypt=option specifies the policy that the dispatcher will use for encrypted connections. option may
be on, off or only. If only is specified, the dispatcher will not allow connections from clients
that have encryption disabled. If off is specified, the dispatcher will expect clients to connect
without encryption, and not allow encrypted connections. If on is specified, the dispatcher
will allow both encrypted and non-encrypted connections; this is the default. See the section
titled Considerations for Running Smart Client with the -encrypt Option.

-cd=directory is used to specify the directory that the dispatcher will change to when it starts.

Installing DBCD as a Windows Service
The Windows server dispatcher (dbcd.exe) may be installed as a service in Windows NT, Windows 2000,
and newer versions of Windows. The following are additional command line options for installation and
removal of the Smart Client server dispatcher as a Windows service:
-display=name is used with the -service parameter and defaults to DB/C DX Smart Client Service.
-install is the install parameter. This parameter causes dbcd to be installed as a service. The default is

to install the service in a stopped state. See -start.
-password=password is the login password parameter and is optionally used with the -user parameter.
-service=name is useful if you wish to run multiple dbcd dispatchers as services concurrently on the

same system. The default value is DbcdService and must be different for the additional
instances of dbcd services. You should also change the service display name using the
-display option.

-start is the start parameter which starts the service. This can also be accomplished from the
Services Control Panel or by restarting the computer. This option may be used in conjunction
with the -install parameter or by itself to start a stopped service.

-stop is the stop parameter which stops the service. This can also be accomplished from the
Services Control Panel.

-uninstall causes the service to be uninstalled. It performs an implicit -stop if necessary.
-user=logonuser is used to assign a user to the service. logonuser should be in the format of

domain-name\user-name. If this parameter is not specified, then the LocalSystem account will
be used. This can also be accomplished with the Services Control Panel prior to starting the

Page 37

sevice. A user name may need to be defined drive mappings that are not available with the
LocalSystem account. If the user name requires a password, the -password parameter should
also be specified.

-verbose causes various success or failure messages to be displayed.
The Services Control Panel can be used to start, stop and check the running status of the Smart Client
dispatcher service. If an error occurs which causes dbcd.exe to stop running, the error will usually be
logged in the Windows Application Log which can be viewed with the Event Viewer.

Running the Smart Client Dispatcher as a Linux Background Process
When executing the Smart Client server dispatcher as a background process in Linux, specify the -y
option to cause dbcd to continue to run even after the terminal connection used to start the dispatcher is
closed. This causes display of information normally sent to stdout to be redirected to /dev/null. Here is
what the command line might look like:
dbcd -y &

Starting the Smart Client Application
After the server dispatcher is running, clients may connect by starting one of the Smart Client client
programs. There are several client programs. dbcscc.exe is the Windows console mode version of the
client program. dbcsc.exe is the Windows GUI mode version of the client program. dbcsc is the Linux
character mode version of the client program. The Java class com.dbcswc.sc.Client in dbcsc.jar is the Java
Smart Client program, and which is the start up program used instead of dbcsc.
The syntax to start the client software from the command line is:
dbcsc computer [-hostport=nnn] [-localport=nnn] [-t=tdbfilename] [-encrypt=option]

[-user=username] [-curdir=directory] [-a=nnn] [-pl] [-lp] [-fontsize=nn] [parameters]
computer is the IP address or DNS name of the computer running the server dispatcher.
-hostport=nnn is the TCP/IP port number on which the client connects to the server dispatcher. It

must correspond with the -port operand on the server dispatcher command line.
-localport=nnn is the port number that the runtime on the server uses for the secondary connection to

the Smart Client. If -localport is not specified, a default value is dynamically assigned as the
port number, typically greater than 10000. If -localport is specified with the value 0 and the
server dispatcher was started with the -sport option, then the secondary connection is
reversed, meaning that instead of the client waiting for a secondary connection from the
runtime, the client will make the secondary connection to the runtime. The value 0 is very
useful for when the client is behind a firewall or NAT boundary (that is, the client doesn't
have an IP address accessible from the server).

-t=tdbfilename is a Linux option used to specify the terminal definition file for the Smart Client session.
-encrypt=option specifies if encryption will be used for the TCP/IP connection ot the runtime. If the

value of option is off, encryption will not be used. If the value of option is on, encryption will
be used. The default is on. See the section titled Considerations for Running Smart Client
with the -encrypt Option.

-user=username is a Linux option that specifies the effective user that the runtime process will run as on
the server. To make this option work, dbcd must be owned by root, and must have the set
user ID on execution bit set. Use the following commands to accomplish this:

 chown root:root dbcd
 chmod u+s dbcd

-curdir=directory is an option that specifies the current directory on the server for the runtime.
-a=nnn specifies the amount of memory allocated for the internal work area. nnn is kilobytes.
-pl specifies that the server uses the Latin1 character set, and that these characters should be

mapped to PC BIOS characters when received by the client. This option would typically be

Page 38

used when the server side is Linux and Smart Client is running under Windows, and
international characters are involved in keyin and display statements.

-lp specifies that opposite configuration compared with -pl. That is, the server side is Windows
using the PC BIOS characters, and a Linux Smart Client is being used.

parameters is one or more additional user-defined command line options used by DB/C programs. These
options are passed to the runtime at start of execution. The first of these options corresponds
with the startup .dbc program. If none is specified, the default is answer.dbc.

The command line options apply to the Java and .NET Smart Client programs where they are passed as
parameters to the main method in the start up class.
All command line options specified above are absorbed by each of the different Smart Client programs,
including those ignored by a particular Smart Client. All other command line options (parameters) are
passed through to the DB/C DX runtime command line that is started on the server.
For the Java Smart Client, the -encrypt option will only work if the Java Secure Sockets Extension (JSSE)
support libraries are available to the JVM.
If there is a firewall between the client and the server, TCP/IP ports must be available for connections.
At startup, the Smart Client client program connects to the server dispatcher on the port specified by
-hostport on the client and -port on the server (the default is 9735). The dispatcher then starts a DB/C DX
runtime which connects back to the client on the port specified by -localport or on a dynamically
assigned port number if -localport isn't specified.

Considerations for Running Smart Client with the -encrypt Option
Encryption for Smart Client uses industry standard SSL key managment. A key file containing a
certificate and a private key for the certificate need to be generated and stored in a key file.
Here is an example of the commands to make the key file on Linux (substitute your own location and
company name in the string following -subj):

openssl genrsa -out selfsigned.key 4096
 openssl req -new -key selfsigned.key -out selfsigned.csr -sha256 \
 -subj "/C=US/ST=Wyoming/L=SelfSigned/O=Portable Software/OU=Org/CN=localhost"
 openssl x509 -req -days 9000 -in selfsigned.csr -signkey selfsigned.key -out selfsigned.crt

cat selfsigned.crt selfsigned.key > dbcserver.crt
Here is an example of the Power Shell commands to make the key file on Windows (substitute your own
location and company name in the string following -subj):

openssl genrsa -out selfsigned.key 2048 // 4096 is an option
openssl req -new -key selfsigned.key -out selfsigned.csr -sha256

-subj "/C=US/ST=Wyoming/L=SelfSigned/O=PTSW/OU=Org/CN=localhost"
openssl x509 -req -days 9000 -in selfsigned.csr -signkey selfsigned.key -out selfsigned.crt
Get-Content .\selfsigned.crt, .\selfsigned.key | dbcserver.crt

The key file (dbcserver.crt in the examples) can have any name, but dbcserver.crt is the default name that
the the DB/C DX Smart Client server looks for. By default, that file should be located in the current
directory that is effective with the server starts. The file name and location can be modified with the
dbcdx.smartserver.certificatefilename runtime property.
For the Java Smart Client, the -encrypt option will only work if the Java Secure Sockets Extension (JSSE)
support libraries are available to the JVM.

Page 39

Compiling, Running and Debugging Programs using Eclipse
DB/C DX programs may be developed using the Eclipse with the DB/C Development Toolkit (DDT)
feature for Eclipse. Eclipse with DDT provides these capabilities:
• editing of DB/C source programs with language-specific features like syntax coloring and hover help
• automatic compilation and source code editor integration of compilation error messages
• runtime execution integration
• source level debugging of DB/C programs
• integration with source code control systems
Eclipse is an open source Integrated Development Environment (IDE) framework that works on
Windows, MacOS, and LINUX.
The first step to using DDT and Eclipse is to install Eclipse. Eclipse may be downloaded from
www.eclipse.org. Install Eclipse according to the instructions for your operating system.
DDT is distributed with DB/C DX in the ddt.zip file. Move that file to a directory of your choice. DDT
can then be installed using the standard Install Features menu items of Eclipse by specifying the ddt.zip
file as an Update Site and then completing the installation normally.
DB/C DX projects may be created using the DX Perspective. Programs and includes are created as files
with specific file name extensions. Compilation occurs automatically on file save of programs and when
the project is built using the Build menu option. Eclipse debugging features like breakpoints and code
stepping are the same as for other languages.

Debugging Programs in Character Mode
To use the character mode source program debugger, programs need to be compiled with the -z option on
the compiler command line. When this option is used, a .dbg file is created in addition to the .dbc file.
When the -z command line option is specified on the runtime command line, the character mode source
program debugger is activated to control program execution.
The debugger window is divided into five subwindows stacked from top to bottom. The top subwindow
is the command entry area. When the debugger window is active, the cursor is always blinking in the
command entry area waiting for user keyboard input. The second subwindow is a variable height
subwindow that contains the source program. The next subwindow is one line that contains execution
status information. The next subwindow is the variables subwindow. This variable height subwindow
contains view variables (explained be low). The bottom subwindow is the results subwindow. This
variable height subwindow displays the result of each debugger command.
One of the three variable height subwindows (source, variables and results) is active. The active
subwindow has its title displayed in reverse color (black on white). Several cursor keys (home, end, page
up, page down, up, down) control the display in the active subwindow. The Window command (press
the W key) toggles between the three titled subwindows. The Help command (press H or ?) displays a list
of all commands in the results subwindow.
Here is a description of each command:
a Alter flags - this allows each of the flags to be set, cleared or remain unchanged.
b Permanent breakpoint - this sets a permanent breakpoint at the line highlighted in the source

window. The breakpoint will remain active until the module is unloaded. Permanent
breakpoints are denoted with an asterisk to the left of the line number. If the highlighted line
is a debug statement, pressing b once will disable the debug statement. pressing b again will
enable it.

c Clear breakpoints - this causes each of the permanent, temporary and value breakpoints to be
cleared.

d Display variable - this displays the current value of a variable in the results window.
e Extended command - this prompts for one of the extended commands (see below).

Page 40

f Change source file - this prompts for a source file name to be displayed in the source window.
g Go - resume execution.
h and ? Help - displays a listing of the commands in the results window.
i Set tab indent - prompt for the number of spaces that leading tab characters are replace with

in the source window.
j One up the return stack - this causes the debug pointer in the return stack to be moved so

that the return stack seems one entry smaller. The line where that return statement would
return to is displayed as the current line in the source window.

k One down the return stack - this causes the debug pointer in the return stack to be moved so
that the return stack seems one entry larger. The line where that return statement would
return to is displayed as the current line in the source window. If at the end of the return
stack, then the next execution line is displayed as the current line in the source window.

l Find program label - this prompts for a program label to search for in the source file
displayed in the source window.

m Modify variable - this prompts for a variable to be modified and for its new value. The
variable to be modified must be in the current module.

n Change module - this prompts for a new module to become the current module.
o Display output screen - display the current output screen waiting for any character to return

to the debugger. This is useful for the character mode version of DB/C.
p Break on value - this prompts for a variable name and break condition for the variable. When

the variable satisfies the condition a break occurs and the break on value is cleared.
q Shutdown - this immediately terminates the debugger and the program being debugged.
r Remove view variable - this removes a variable from the variables window.
s Search for string - this searches the current source file for a string of characters. This string

may be in any line including comment lines.
t Temporary breakpoint - set a temporary breakpoint at the line highlighted in the source

window. Temporary breakpoints are automatically cleared the first time program execution
reaches and is paused by a temporary breakpoint. Temporary breakpoints are denoted with a
plus sign to the left of the line number.

u Step out of call - resume execution and then pause on the first statement executed after the
current return stack scope is removed from the stack. This may happen via return statement
or by various other methods.

v Add view variable - this prompts for a variable name and then adds a continuously updated
display of that variable in the variables window.

w Change window - toggle the active window between the source, variables and results
windows.

x Single step - the next line of the source program will execute.
y Go to line number - cause the highlighted line in the current source file to be changed to the

line that is specified by the line number that is prompted for.
z Step over call - one line of the source program will execute unless the line is a call statement,

in which case execution continues until it is paused at the line immediately following the call
statement.

- Decrease window size - shrink the height of the active window of the source, variables or
results window.

+ Increase window size - enlarge the height of the active window of the source, variables or
results window.

Page 41

Toggle line numbers - toggle the line numbers in the source window either off or on. Line
numbers are initially on.

% Toggle case sensitive - toggle case sensitivity for all variable names, labels and search strings.
Case sensitivity is initially off.

/ Search again - this causes the last search command to be repeated.
These extended commands are available at the EXTCMD: prompt:
a Set a breakpoint that will occur only when the value of a variable changes. This prompts for

a variable name. The current value of variable is captured, and a breakpoint will happen
when the value of the variable changes. The changed value of the variable will then be
captured so that continuing execution will cause a break to occur only when the value
changes again.

c Clear global variables - all global character and numeric variables are cleared.
g Save global variables - all global character and numeric variables are saved in the dbgglbl.cfg

file. The default file name can be altered with the dbcdx.debug.global runtime property.
l Load global variables - global character and numeric variables are restored to the values

saved in the dbgglbl.cfg file.
m Toggle more option - toggle the single page pause mode of the results window. This mode is

initially off.
p Save preference - save the debugger preference settings in the dbgpref.cfg file. The default

file name can be altered with the dbcdx.debug.preference runtime property.
r Toggle result window - the results window will toggle between display and invisible mode. It

is initially displayed.
v Toggle variables window - the variables window will toggle between display and invisible

mode. It is initially displayed.

Page 42

Runtime Properties

The DB/C DX runtime properties file contains configuration and runtime information for execution of
DB/C DX programs. The properties file is a native text file that contains key word value pairs in each line
of the file. Properties files use the backslash character (\) as an escape character. Thus when you need to
include one backslash in a value, specify two consecutive backslashes.
This search for the runtime properties file is done in the following order:
1. -cfg=filename option specified on the command line.
2. DBC_CFG=filename defined in the operating system environment.
3. the file named dbcdx.cfg located in the current directory.
These elements are used in the following descriptions:
program is the name of a .dbc file created by the DB/C DX compiler.
string is a string of characters and digits. It may contain blanks.
number is a string of one or more digits.
directory-or-fsname is either a directory name or is the DB/C FS server name as specified in the

dbcdx.file.server.fsname. properties. If it is a directory name, it may contain blanks and other
special characters.

directory-or-fsname [; directory …] is either a single DB/C FS server name or one or more directories
separated by a semicolon. Combining a DB/C FS server name with one or more directories is
not supported.

translate-spec is either nnn:nnn or nnn-nnn:nnn where nnn is the decimal value of a character. The value
before the colon is the translate from character or the translate from character range, and the
character after the colon is the translate to character or the first character in the translate to
range.

The following keyword-value pairs of properties may be specified. Unless otherwise noted, each keyword
may only be specified once in the properties file.
dbcdx.beep = old

When this property is specified on a Windows machine, beep in dbc.exe works as it did in
DB/C DX Release 11.0, and does not use the Windows default alert sound.

dbcdx.bitop = old
When this property is specified, the and, not, or, and xor statements always clear the high
order bit as in DB/C release 8.0.

dbcdx.compare = old
When this property is specified, the compare statement sets the over flag if there would be
overflow as in DB/C release 7.0.

dbcdx.console = file
This property defines the file name of the console file if the console statement is used. If this
property is not defined, then the console statement is ignored.

dbcdx.cxcompat = old
This property supresses the E 566 error.

dbcdx.errordisplay = off
This property specifies that an error message will not be displayed when there is an
untrapped error.

dbcdx.keytag = old
If this runtime property is specified, the keytag property of the reformat and sort utilities will
be the same size as in DB/C release 8.0, which were 8 and 9 bytes respectively.

dbcdx.kydspipe = on
This property causes the *p=n:n, *resetsw, *hoff and *alloff control codes to be ignored. In
addition, the cursor is never turned off. The DB/C DX runtime implements these control

Page 43

codes by directing a sequence of escape characters to the screen. When the output is being
redirected to a Linux pipe, these escape sequences can cause problems. The dbcdx.kydspipe
property is useful in this situation.

dbcdx.memalloc = nnn
This property specifies the number of kilobytes that will be allocated for program area, data
area, and other buffers. The default is 2048. This value should be increased if an out of
memory error occurs.

dbcdx.precision = old
When this property is specified, the divide statement and divide expressions will give results
with the same precision as in DB/C release 8.0.

dbcdx.preload = program [; program …]
This property specifies the modules to be preloaded. Each program is a .dbc file that was
created by the compiler. A single, unnamed instance of each program is created before any
other program execution begins. The .dbc extension does not need to be specified. A program
specified by this property may not be used as a target of a loadmod statement.

dbcdx.rounding = old
When this property is specified, rounding works as in DB/C release 7.0.

dbcdx.search = old
When this property is specified, the search statement will compare two numeric values by
comparing the logical strings as in DB/C release 8.0.

dbcdx.start = program
This property specifies the default startup program. If not specified, answer.dbc is the default
startup program. Specification of this property changes the behavior of dbcdx.stop.

dbcdx.stop = program
This property specifies the default stop program. If not specified, the stop statement or an
untrapped error causes execution to terminate. If specified, a stop statement or an untrapped
error occurring while executing a program other than then the program(s) specified by
dbcdx.start and dbcdx.stop will cause the program specified as the stop program to be
chained to. If the program executing the stop or untrapped error is the same as the program
specified by dbcdx.stop and dbcdx.start is specified, then the program specified by
dbcdx.start is chained to. Otherwise, the stop statement or an untrapped error causes
execution to terminate.

dbcdx.trap = old
If this runtime property is specified, then a trap automatically assumes the trap properties
nocase and prior as in DB/C release 6.0.

dbcdx.utility = filename
utility is one of: aimdex, build, copy, create, encode, exist, index, reformat, or sort. This
property overrides the runtime operation of performing the operation internally or
submitting the file manipulation command to the DB/C FS server if
dbcdx.file.primary.server is specified. This property causes the runtime instruction of the
same name to execute the program name defined by filename in a manner similar to rollout
without any display.

dbcdx.client.memalloc = nnn
This property specifies the number of kilobytes that will be allocated for images, buffers and
other information in the Smart Client client. This value is overridden by the -a command line
option on the Smart Client command line. This value should be increased if an out of
memory error occurs.

dbcdx.smartserver.certificatefilename = filename
This property specifies the file name of the key certificate file to be used for encrypted
communication with Smart Client clients. If not specified, the default file is dbcserver.crt in
the current directory.

Page 44

dbcdx.clock.day = 21-char-string
Each three characters specifies the day returned by the clock statement. The default value is
"SunMonTueWedThuFriSat".

dbcdx.clock.env = string
This property specifies the string value returned by the clock env statement. The default
value is the operating systems environment.

dbcdx.clock.month = 36-char-string
Each three characters specifies the month returned by the clock statement. The default value
is "JanFebMarAprMayJunJulAugSepOctNovDec".

dbcdx.clock.port = string
This property specifies the string value returned by the clock port statement.

dbcdx.comm.tcp.serverkeepalive = on
This property causes the tcp sockets that are created by TCP/IP comfile statements to be
created with the "SO_KEEPALIVE" option.

dbcdx.debug.global = filename
This runtime property defines the character mode debugger's default file name for saving the
value of global variables. If not defined the default is dbgglbl.cfg in the path defined by
dbcdx.file.dbc. This property is only applicable to the character mode debugger.

dbcdx.debug.preference = filename
This runtime property defines the character mode debugger's default file name for saving the
debugger preference. If not defined the default is dbgpref.cfg in the path defined by
dbcdx.file.dbc. This property is only applicable to the character mode debugger.

dbcdx.display.autoroll = off
This property specifies that, except for the *r control code, the display statement does not
cause the current window to scroll up.

dbcdx.display.bgcolor = color
color is one of *red, *white, *black, *blue, *green, *yellow, *cyan or *magenta. This
property specifies the default background color. If color is not specified, the background color
defaults to black.

dbcdx.display.color = color
color is one of *red, *white, *black, *blue, *green, *yellow, *cyan or *magenta.. This
property specifies the default foreground color. If color is not specified, the foreground color
defaults to white.

dbcdx.display.columns = number
This property specifies the number of display columns.

dbcdx.display.console.closebutton = off
This property specifies that the console window will not have a close button.

dbcdx.display.device = devicename
This property specifies the output device or file associated with display operations.

dbcdx.display.font = fontname
This property specifies the font for the graphical keyin and display window. The default is a
monospaced font.

dbcdx.display.hoff = old
If this runtime property is specified, an *alloff (*hoff) control code in a display or keyin
statement causes the foreground and background colors to be reset to the default in the
sammer manner as in DB/C release 7.0.

dbcdx.display.lines = number
This property specifies the number of display lines.

Page 45

dbcdx.display.resetsw = old
When this property is specified, the display control code *resetsw will function in the same
manner as in DB/C Release 7.0 and will not alter the cursor position.

dbcdx.display.termdef = filename
This property specifies the termdef binary file that defines the terminal characteristics. In
Linux, if this property is not specified, the Linux terminfo capability is used.

dbcdx.file.aiminsert = old
This property causes the AIM write and insert operation to not invalidate the readkg or
readkgp index position as specified by the PL/B ANSI standard. A readkg or readkgp
occurring with an invalid index position will cause an I 714 error to occur. Setting this
property will cause DB/C DX to be similar to DB/C 9 and prevent the aim write or insert
from in validating the index position.

dbcdx.file.casemap = translate-spec [; translate-spec …]
This property specifies the file case translation table used to modify the default behavior for
case insensitive aim reads. This property may be needed to support international character
set as DB/C DX by default only converts a-z to A-Z for aim record comparisons. This would
be equivalent to having a translate value of 97-122 : 65.

dbcdx.file.collate = translate-spec [; translate-spec …]
This property specifies the collating sequence table used to modify the default behavior of the
sort utility and index keys. This property may be needed to support international character
sets as DB/C DX by default sorts using the ASCII value of the character. This would be
equivalent to having a translate value of 0-255 : 0.

dbcdx.file.compat = dos
dbcdx.file.compat = rms
dbcdx.file.compat = rmsx
 This property specifies the Datapoint DATABUS file statement compatibility. This property

causes the file name in open, prepare and utility statements to be altered before the operation
occurs. If dos is specified, the first slash (/) in the file name is translated to a period. If rms is
specified, the first slash (/) in the file name is translated to a period. If the extension is TEXT,
it is translated to TXT. If the extension is ISAM, it is translated to ISI. In addition, if the name
portion of the file name (left of the slash) is longer than eight characters, it is truncated to
eight characters. If rmsx is specified, the same actions occur as for rms, except name portion
truncation does not occur.

dbcdx.file.dbc = fsname
dbcdx.file.dbc = directory [; directory …]
 This property specifies the name of the DB/C FS server or the local directories to search when

opening a program object (.dbc) file. If the value is a directory or a list of directories an
attempt is made to locate that file in the directory or directories in the order specified. If the
value is a DB/C FS server name, the database server will attempt to locate the file in the
directory or directories that is controlled by the database configuration information.

dbcdx.file.editcfg = directory
The source code editor utility (edit) stores configuration information in a file named edit.cfg
in the current directory. If this runtime property is specified, the directory location of this file
is designated by directory.

dbcdx.file.excloffset = nnn
This property specifies the file offset that will be used to implement the exclusive open
operation. The default value is operating system dependent, and should usually not be
changed.

dbcdx.file.exclusive = off
This property applies to the Linux runtime and utilities. It causes file open to ignore any file
locks.

dbcdx.file.extcase = upper
This property specifies how default extensions are appended to file names that do not contain

Page 46

an extension. If this property is specified, an uppercase extension is appended to the file
name. If this property is not specified, a lowercase extension is appended to the file name.

dbcdx.file.fileoffset = nnn
This property specifies the file offset that will be used to implement the filepi operation. The
default value is operating system dependent, and should usually not be changed.

dbcdx.file.filepi = noerr
If this runtime property is specified, an implicit filepi 0 occurs before each filepi statement.
This will inhibit E 504 errors from occurring when the scope of two filepi statements overlap.

dbcdx.file.fonts = directory [; directory …]
If property specifies the name of the local directories to search for font files used to create
PDF and PS print files. It is only used in Linux environments.

dbcdx.file.ichrs = on
This property allows DB/C-type files to contain characters in the range 128 through 248.
Digit compression is disabled, but space compression still works. If this property is not
specified, then values 128 through 248 are considered to be digit compression characters.

dbcdx.file.image = fsname
dbcdx.file.image = directory [; directory …]
 This property specifies the name of the DB/C FS server or local directories to search when

opening an image file. If the value is a directory or a list of directories an attempt is made to
locate that file in the directory or directories in the order specified. If the value is a DB/C FS
server name, the database server will attempt to locate the file in the directory or directories
that is controlled by the database configuration information.

dbcdx.file.keytrunc = on
If this runtime property is specified, an index key with a length greater than the specified key
length is truncated with no regards to the characters truncated as in DB/C release 8.0.

dbcdx.file.minusoverpunch = ascii
If this runtime property is specified, the characters that are written to disk when the *mp
control code is specified are ASCII overpunch characters.

dbcdx.file.lock = sem
If this runtime property is specified, the filepi statement and record locking uses Linux
semaphores instead of Linux file locks. This property is ignored in Windows.

dbcdx.file.nameblanks = nochop
dbcdx.file.nameblanks = squeeze
 This property changes the file name processing behavior in the open and prepare statements.

The default file name processing behavior is to chop trailing blanks from the file name and
keep existing blanks within the file name. Setting this property to nochop will cause no blank
character conversions to occur. Setting this property to squeeze will cause all blanks to be
removed from the file name.

dbcdx.file.namecase = upper
dbcdx.file.namecase = lower
 If the value is a upper, then all file names are translated to upper case. If the value is lower,

then all file names are translated to lower case.
dbcdx.file.open = fsname
dbcdx.file.open = directory [; directory …]

This property specifies the name of the DB/C FS server or local directories to search when
opening a file. If the value is a directory or a list of directories an attempt is made to locate
that file in the directory or directories in the order specified. If the value is a DB/C FS server
name, the database server will attempt to locate the file in the directory or directories that is
controlled by the database configuration information.

dbcdx.file.openlimit = nnn
nnn is the number of files that may be open concurrently at the operating system level. The
default is dependent on the operating system configuration.

Page 47

dbcdx.file.prefix.fsname = fileprefix
This property specifies that file names that begin with the directory fileprefix and do not have
a volume specification as part of their name will be opened on the DB/C FS file server
specified by fsname. The prefix is case sensitive for Linux, and case insensitive for Windows.

dbcdx.file.prep = directory-or-fsname
This property specifies the local directory or DB/C FS server where a file is created. If the
value is a directory, then the file is created in that directory. If the value is a file server name,
then the file is created in the directory that is controlled by the database configuration
information.

dbcdx.file.primary.server = fsname
This property specifies the preferred DB/C FS server for all file operations, including file
open, file prepare and execution of file utilities (e.g. aimdex). This property is ignored for file
open and file prepare if the file name contains a volume specification or the property file
contains dbcdx.file.open or dbcdx.file.prep.

dbcdx.file.prt = fsname
dbcdx.file.prt = directory [; directory …]
 This property specifies the DB/C FS server or local directories to search when opening or

creating a spool file with the splopen statement. If this property is not specified, then the
splopen statement uses the current directory, not the open or prep property.

dbcdx.file.recoffset = nnn
This property specifies the file offset that will be used to implement record locking. The
default value is operating system dependent, and should usually not be changed.

dbcdx.file.rolloutclose = on
This property specifies that rollout statement implicitly closes all shared files when the
statement is executed. These implicit closes are apparent to the operating system, but are not
apparent to the DB/C program, except to the extent that record locks are lost. This property is
provided for compatibility with older versions of DB/C DX.

dbcdx.file.server.fsname.database = database
This property associates the database name to the user defined fsname. It is a required
property for each dbcdx.file.server.fsname.server that is specified. database is the name of the
data dictionary file (.dbd), which minimally must contain an access code appropriate for the
values of the required dbcdx.file.server.fsname.user and dbcdx.file.server.fsname.password.

dbcdx.file.server.fsname.encryption = on
This property enables the encryption feature to the user defined fsname. It is an optional
property for each dbcdx.file.server.fsname.server that is specified and is ignored if connecting
to a DB/C FS 2 server. If not specified, then encryption will not be used.

dbcdx.file.server.fsname.localport = nnn
This property associates a local IP port number to the user defined fsname. It is an optional
property for each dbcdx.file.server.fsname.server that is specified and is ignored if connecting
to a FS 2 server. After the initial TCP/IP connection to the FS server, the local port number is
used for the second TCP/IP connection which occurs in the direction from the FS server to
the DB/C DX runtime. If this property is not specified, then a dynamic value will be used. If
nnn is a positive value, it must not conflict with reserved values for the specific operating
system. The value zero is a special case and causes the second TCP/IP connection to occur in
the direction of DB/C DX runtime to FS server and sport must be defined in the FS server
configuration file.

dbcdx.file.server.fsname.password = password
This property associates the password to the user defined fsname. It is an optional property for
each dbcdx.file.server.fsname.server that is specified. If not specified, then a value of
PASSWORD is used. password combined with the value defined by
dbcdx.file.server.fsname.user needs to match a user name in the DB/C FS Server password
configuration file.

Page 48

dbcdx.file.server.fsname.server = computer
This property associates the user defined fsname with the computer running the DB/C FS file
server software. computer is the name of the computer (the DNS name) or is the IP address of
the computer. Each specification of this property requires a matching
dbcdx.file.server.fsname.database to be specified. This property must be specified for each
server that is used in the dbcdx.file.prep, dbcdx.file.open, dbcdx.file.vol,
dbcdx.file.prefix.fsname and dbcdx.file.primary.server properties. This property may be
specified more than once, except fsname can not be duplicated.

dbcdx.file.server.fsname.serverport = nnn
This property associates a server IP port number to the user defined fsname. It is an optional
property for each dbcdx.file.server.fsname.server that is specified. nnn is the port number that
is used for the initial TCP/IP connection to the FS Server. If this property is not specified,
then a value of 9584 is used for non-encryption connections and 9585 is used for encryption
connections. Otherwise, nnn can be a positive value that needs to match nport or eport in the
FS Server configuration file for non-encrypted or encrypted connections respectively.

dbcdx.file.server.fsname.user = username
This property associates the user name to the user defined fsname. It is an optional property
for each dbcdx.file.server.fsname.server that is specified. If not specified, then a value of
DEFAULTUSER is used. username must match a user name in the FS Server password
configuration file as well as the password defined by dbcdx.file.server.fsname.password.

dbcdx.file.sharing = off
This property specifies single user mode. When this property is specified, all files are opened
in exclusive mode.

dbcdx.file.source = fsname
dbcdx.file.source = directory [; directory …]
 This property specifies the DB/C FS server or local directories to search when opening a

program source file. If the value is a directory or a list of directories an attempt is made to
locate that file in the directory or directories in the order specified. If the value is a DB/C FS
server name, the database server will attempt to locate the file in the directory or directories
that is controlled by the database configuration information.

dbcdx.file.updtfill = old
If this runtime property is specified, then an update with a list shorter than the record in the
data file will not blank fill the remaining characters in the data file as in DB/C release 7.0.

dbcdx.file.vol.volume = fsname
dbcdx.file.vol.volume = directory [; directory …]
 This property specifies the local directory or DB/C FS database associated with the volume

that is specified. volume is case sensitive and must exactly match the volume specified on the
open and prepare statements. If the value is a DB/C FS server name, then files will be created
in the location that is controlled by the database configuration information. This property
may be specified more than once, except volume can not be duplicated.

dbcdx.file.wttrunc = on
If this runtime property is specified, then a write or update operation with a list longer than
the length specified in the file, ifile or afile definition will be truncated so as not to exceed the
specified length as in DB/C release 7.0. This will inhibit I 716 errors from occurring when the
list longer than the record length.

dbcdx.gui.clipboard.codepage= OEM
By default DB/C DX assumes that text being written to and read from the clipboard uses the
Windows ANSI character set, which is essentially the same as ISO-8859-1 and is the character
set generally used in Windows except in consoles. If this property is set, then clipboard load
and store operations will assume that the OEM character set, also known as the IBM PC
Extended Character Set, is being used. The OEM character set is used by Windows in
consoles. The OEM character set varies somewhat between computers and depends on the
code page ROM installed by the manufacturer.

Page 49

dbcdx.gui.ctlfont = font
This property defines the font to be used for GUI controls. font is the font name without size
or style information.

dbcdx.gui.draw.stretchmode = digit
This property defines the stretch mode used for DRAW stretching operations. This property
is only applicable in Windows. The value of digit must be one of 1, 2, 3 or 4. These correspond
to the folllowing windows stretching modes (1 is the default):
1 = STRETCH_DELETESCANS
2 = STRETCH_HALFTONE
3 = STRETCH_ANDSCANS
4 = STRETCH_ORSCANS

dbcdx.gui.enterkey = old
This property makes the enter key work as it did in DB/C DX release 11 and before. In panels
and dialogs, the enter key acts like the tab key and no NKEY messages are sent to the queue
when enter is pressed.

dbcdx.gui.focus = old
This property causes the GUI change control focus command to bring the window containing
the control to the front of all windows.

dbcdx.gui.listbox.insertbefore = old
This property makes listboxes and dropboxes that are in insertorder behave as they did
before DB/C DX release 14. This affects the insert behavior when an insertbefore change
command is issued without any data. Prior to version fourteen, the insert point would be at
the top of the list but each subsequent insert would move it down by one position. In version
fourteen and newer, without this runtime option, the insert position will remain at the top.

dbcdx.gui.pandlgscale = mmm / nnn
This property specifies the ratio applied to all control sizes and positions in panel and dialog
resources. It also affects the size of a dialog resource that is specified by the size parameter. It
does not apply to the window size specified in the prepare statement, except if the
pandlgscale keyword is specified, then the size of the window is scaled. Scaling does not
apply to show positions, image variables, window positions, mouse positions, or any other
GUI position or size.

dbcdx.keyin.break = off
dbcdx.keyin.break = stop
 This property changes the default behavior of the DB/C DX runtime, which is to terminate if

the break key is pressed. Setting this property to off prevents the termination of the DB/C DX
runtime and the character pressed is processed normally. Setting this property to stop causes
the break key to perform an implicit stop instruction when the break key is pressed. The
break key is operating system dependent.

dbcdx.keyin.case = upper
dbcdx.keyin.case = reverse
 This property specifies the translation of keyin character case. The following table describes

the case of the resulting letter in different situations:

dbcdx.keyin.case keyin
control code

shifted
keystroke

unshifted
keystroke

Page 50

dbcdx.keyin.cancelkey = key
key is one of: none, tab, esc, ^a … ^z, F1 … F20. The default is none. This property specifies
the keyin cancel key. Pressing the cancel key causes the input of a keyin variable to be erased.

dbcdx.keyin.device = devicename
This property specifies the input device or file associated with keyin operations.

dbcdx.keyin.editmode = on
If this runtime property is specified, when a variable is edited during keyin, the insert key
may be used to toggle between insert and over strike modes.

dbcdx.keyin.endkey = xkeys
This property specifies that additional function keys will cause keyin to terminate. The
default ending keys for a keyin instruction are enter, F1-F20, up, down, left and right. The
additional function keys include home, end, page up, page down, insert, delete, esc, tab and
back tab.

dbcdx.keyin.fkeyshift = old
This property applies to the Windows runtime and causes the pressing of shifted F1-F10 to be
the equivalent of pressing F11-F20 respectively.

dbcdx.keyin.handshake = dtr
dbcdx.keyin.handshake = cts
dbcdx.keyin.handshake = on
 This property applies to the Windows runtime. It determines the flow control when DB/C

DX is executed through a communication port, which requires dbcdx.display.termdef to be
defined. The default is dtr.

dbcdx.keyin.ict= nnn
This property applies only to Linux runtimes. In order to properly process multibyte key
sequences from terminals, the runtime has a built in delay when it sees the first character of
such a sequence. This property allows the user to adjust this delay. nnn is a number from 1 to
9 inclusive. It is the number of tenths-of-a-second to delay after the first byte of a potentially
multibyte sequence to wait and see if more bytes are received. The default is 5.

dbcdx.keyin.ikeys = on
This property is valid for all versions of DB/C that are run on terminals with the appropriate
keys. When this property is set, this property allows many special characters to be entered in
keyin statements. Characters with decimal values 21 and 128–255 are valid when this
property is set.

dbcdx.keyin.interruptkey = key
key is one of: none, esc, ^a … ^z, F1 … F20. The default is ^z. This property specifies the
keyin interrupt key. Pressing the interrupt key causes an implicit stop instruction to occur.

dbcdx.keyin.lowertranslate = translate-spec [; translate-spec]
After the dbcdx.keyin.translate processing is done, if the case mapping processing is done. If
*lc is in effect, then the dbcdx.keyin.lowertranslate translation is applied.

dbcdx.keyin.translate = translate-spec [; translate-spec]
The dbcdx.keyin.translate property is used to translate and validate entries during keyin.

none
none
upper
upper
reverse
reverse
any value
any value

*in
*it
*in
*it
none
*it
*uc
*lc

upper-case
lower-case
upper-case
lower-case
lower-case
upper-case
upper-case
lower-case

lower-case
upper-case
upper-case
lower-case
upper-case
lower-case
upper-case
lower-case

Page 51

When a keystroke is entered, the equivalent value of the character is used - as long as the
value is non-zero. If the byte value of the key in the specification is zero, keyin of that
character will not be permitted.

dbcdx.keyin.uppertranslate = translate-spec [; translate-spec]
If *uc is in effect, then the dbcdx.keyin.uppertranslate translation is applied.

dbcdx.print.autoflush = on
This property causes an implicit *flush command to be issued at the end of every print
statement.

dbcdx.print.cups = no
This property tells the runtime that CUPS has not been installed on this machine. The default
on Linux systems is to assume that CUPS is installed.

dbcdx.print.destination = client
This property causes print data to be directed to a print file or device on the client machine
when Smart Client is being used. If this property is not specified, printing will occur on the
server side.

dbcdx.print.device = devicename
This property sets the default print destination. devicename will be the print device if a print
statement is issued without a SPLOPEN. If this option is not used, then the default print
destination on Windows is the currently selected printer, and on Linux it is /dev/lp.

dbcdx.print.language = language
This property specifies the default print language used for splopen statements. Values of
language are pdf, pcl, pcl(noreset), ps, native and none. native causes printing to use the
operating system print facilities. none causes basic line oriented print output. native is the
default for the Windows GUI runtime (dbc.exe). none is the default for other runtimes.

dbcdx.print.pcl.imageposition = old
This property affects the relationship between the current cursor position and the drawing of
an image. Images are drawn by default with the current cursor position at the upper left
corner of the image. If this property is used, then for pcl only, images are drawn with the
current cursor position at the lower left corner if the image.

dbcdx.print.pcl.uom = old
This property affects the unit-of-measure used for positioning output to PCL. That is, when
using the *p=h:v print control and others that use pixels. The default method is to use PCL
units. This is effectively the dpi as set by the Z option on the splopen statement. PCL units
default to 300 per inch. If this property is specified, the unit of measure is 1/72 of an inch.

dbcdx.print.translate = translate-spec [; translate-spec …]
This property specifies the print translation table. In addition to the two types of values in
translatespec, the print translate property allows a translate specification in the form
nnn:(nnn, nnn, …).When this form is specified, the from translation character (the first nnn) is
translated into a multiple character sequence made up of the characters in the parentheses.

Page 52

SQL

DB/C DX provides for access to an SQL database management system. The DB/C program contains the
sqlexec, sqlcode, and sqlmsg statements to access the SQL database.
In the Windows version of DB/C DX, the SQL interface is provided for databases that provide an ODBC
driver.
In the Linux version of DB/C DX, the SQL interface is provided for databases that provide a unixODBC
driver. The DB/C DX SQL interface for unixODBC is the file named dbcsql.so. This file must be located
where the system loader can find it. This is typically in /lib or /usr/lib. An I 653 error will result if one of
the sql statements is executed and the interface file cannot be found. For more information about
unixODBC see www.unixodbc.org.
The sqlexec statement executes SQL statements. The sqlcode and sqlmsg statements provide the program
with information about the success or failure the SQL statements executed with sqlexec.
The three forms of the sqlexec statement are:
 sqlexec charexp

sqlexec charexp from from-list
sqlexec charexp into into-list

The charexp operand contains the actual SQL statement. This operand can be either a character literal or a
character variable. Within the actual SQL statement, expressions of the form :n, where n is an integer, are
replaced with the corresponding variable in the from-list. For example, in the expression:
 sqlexec "SELECT : 1 USING C1 FROM TABLE" from var1

:1 is replaced with the value in var1 before the statement is passed to the SQL server. Care should be
taken that variables in the into-list are large enough to hold the results, and that variables in the from-list
are not too large for the table. Of special note, an SQL variable declared as DECIMAL(3,2) is the same size
as a DB/C variable defined as NUM 1.2.
The sqlexec statement affects flags as follows. If an SQL statement returns an error condition, then the less
flag is set and the over and equal flags are cleared. If the SQL statement is successful, then the equal flag
is set and the less and over flags are cleared. If the SQL statement returns no data, the over flag is set and
the less and equal flags are cleared. This will occur when there is no data from an SQL FETCH statement.
The sqlmsg statement places any message associated with the most recently executed SQL statement into
a character variable. The syntax is:
 sqlmsg charvar

The sqlcode statement places the code returned by the SQL server into a numeric variable. The syntax is:
 sqlcode numvar

Connect
Connections to the SQL server are made with the SQL CONNECT statement. Here is an example:
 sqlexec "CONNECT SERVER=dbmain, NAME=user1, PASSWORD=pswd"

These five keywords are accepted: SERVER, NAME, PASSWORD, CONNECTION and STRING. Each
of the keywords is followed by an equal sign and a value. The keywords may be in any order. The
SERVER is required. The others are optional. SERVER is the database or dataset name. NAME and
PASSWORD are the user and password. CONNECTION specifies the connection name. The connection
name may be up to 20 characters. STRING is an ODBC driver specific string of characters.
The CONNECTION keyword is unnecessary if only one database will be accessed. It is useful when
concurrent access will be done to two or more databases. The connection clause is CONNECTION
connection, where connection is the value specified with the CONNECT keyword in the connection

Page 53

statement. The connection clause is specified in each SQL statement, just like other clauses in the SQL
language. Here is an example:
 SQLEXEC "CONNECT SERVER=a, NAME=user1, PASSWORD=pswd, CONNECTION=C1"
 SQLEXEC "DELETE CONNECTION C1 FROM TABLE1 WHERE NAME='JIM'"

Select and Fetch
When retrieving results from an SQL server, it is necessary to use cursors. This is because an SQL SELECT
statement can result in multiple rows of data that must be fetched one at a time into DB/C program
variables. To use a cursor, the USING cursor-name clause must be in the SQL statement. The cursor-name
may be up to 20 characters long. Up to fifty different cursor-names may be declared and in used.
A cursor-name may be redeclared with a new SELECT statement to have a new meaning.
There are two options for cursors that may be set in the statement. The first is SCROLL, which
determines membership in the cursor. The second is LOCK, which determines how concurrency control
is implemented. These options are not available in certain SQL implementations. Options are specified
like this:
 sqlexec "SELECT OPTIONS(SCROLL=FORWARD, LOCK=FETCH) FROM TABLE ..."

The OPTIONS keyword must be immediately after the connection clause if it exists, or immediately after
the SELECT keyword if a connection clause doesn't exist. Either or both options can be missing and the
keywords are case insensitive.
The SCROLL options are:
FORWARD The rows in the cursor can only be retrieved in order.
KEYSET The rows in the cursor are determined at SELECT time, but the data in them can change.
DYNAMIC The rows and the data in the cursor can change.
The LOCK options are:
READONLY The cursor is read only.
OPTBYTIME Changes are detected using special concurrency columns like TIMESTAMP and ROWID.
OPTBYVAL Changes are detected by comparing values in selected columns.
FETCH Rows are locked when they are fetched.
Rows are retrieved using the SQL FETCH statement. Here is the syntax of a FETCH statement that fetches
the next row in the cursor into the list of DB/C variables in the into-list:
 sqlexec "FETCH USING cursor-name" into into-list

The FETCH statement may also specify a row to retrieve. The syntax for this is as follows:
 sqlexec "FETCH row-spec USING cursor-name" into into-list

The values for row-spec are:
NEXT gets the next row
PRIOR gets the previous row
PREV gets the previous row
PREVIOUS gets the previous row
FIRST gets the first row
LAST gets the last row
RELATIVE n gets the nth row from the current position
ABSOLUTE n gets the nth row in the cursor

Update and Delete
Two other important SQL statements are UPDATE and DELETE. Each has two distinct modes - with or
without a cursor. Without a cursor, the effect of the SQL UPDATE and DELETE statements applies to
multiple rows of a table. For example:
 sqlexec "UPDATE PRODUCTS SET PRICE = 12.50 WHERE PRICE = 0"

Page 54

This would set all rows with zero price to have price of 12.50.
The SQL UPDATE and DELETE statements may also performed through cursors. When updating or
deleting through a cursor, the current row of the cursor is updated or deleted. For example:
 sqlexec "DELETE FROM PRODUCTS WHERE CURRENT USING CURSOR2"

This SQL statement will delete the most recently retrieved row using the cursor CURSOR2.
In the case of UPDATE through a cursor, the lock option on the SELECT statement is important. Updates
will not be allowed if the cursor is a READONLY cursor. Updates are guaranteed to succeed if the
LOCK=FETCH option is specified. Depending on which SQL product is being used, you may have to use
the statements like BEGIN TRANSACTION and END TRANSACTION, around the FETCH and UPDATE
statements. If the LOCK option is set to OPTBYVAL or OPTBYTIME, values will be compared before the
update takes place. If they are different than what was fetched, the update will fail.

NULL values
DB/C DX provides support for NULL values. A NULL value is sent to the SQL server if the DB/C
variable in the from-list has the NULL value. The DB/C variable in an into-list will be set to the NULL
value if a NULL value is returned. The DB/C setnull statement is used to change the value of a character
or numeric variable to NULL. The DB/C isnull operator is used to indicate the NULL or non-NULL
status of a character or numeric variable.
It is also possible to use the NULL SQL keyword to pass NULL values to the SQL server. Here is an
example:
 sqlexec "INSERT INTO TABLE1 VALUES (NULL)"

Page 55

Communications

The communication statements (comopen, send, recv, etc.) provide a generalized means of sending
messages to and from other devices or programs. Serial port communications and TCP/IP
communications are supported in DB/C DX.

Serial Communications
For Windows, up to 99 serial ports are supported. The device name (device below) is com1, com2, ...
com99.
For Linux, all /dev/xxx devices that are connected to serial ports are supported. The Linux
communications interface does not support the comctl statement.
To open a serial port, the comopen statement contains the serial port parameters. These parameters are:
 SERIAL device:speed, parity, bits, stopbits, instart, inend, outstart, outend, ignore, length
speed is the baud rate. Valid values are 3, 6, 12, 24, 48, 96, 192, 384, 576, and 1152. These values represent
300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200 baud, respectively. If this value is not
specified, then the current operating system setting is used.
parity is one of n, o, or e. These represent none, odd, and even, respectively. If this value is not specified,
then the current operating system setting is used.
bits is the number of bits per character. Valid values are 5, 6, 7, or 8. If this value is not specified, then the
current operating system setting is used.
stopbits is the number of stop bits per character. Valid values are 1 or 2. If this value is not specified, then
the current operating system setting is used.
The instart, inend, outstart, outend, and ignore parameters consist of the standard ASCII printable characters
(hex 20 through 7E) except for ^ and \. When a ^ is en countered, the following character must be one of
a through z. This combination signifies the control characters Ctrl-A through Ctrl-Z (hex 01 through 1A).
Whenever a \ is encountered, the following three characters must be decimal digits. These three digits
signify the decimal value of the character. Values from 000 through 255 may be specified (for example,
\000 is hex 00 and \127 is hex 7F). Use \\ and \^ for the characters \ and ^ respectively. Specifying a
parameter as null ,, causes that parameter to be unsupported (no default character is assumed).
instart is the input message start character sequence. This sequence of characters marks the beginning of
the message that will be received by the recv statement. When the message is put into the DB/C program
variables, this character sequence is not included. If this value is not specified, no default character is
assumed.
inend is the input message termination character sequence. This sequence of characters marks the end of
the message that will be received by the recv statement. When the message is put into the DB/C program
variables, this character sequence is not included. If this value is not specified, the default character ^m is
assumed.
outstart is the output message start character sequence. This sequence of characters is appended to the
beginning of the message being sent by the send statement. If this value is not specified, no default
character is assumed.
outend is the output message termination character sequence. This sequence of characters is appended to
the end of the message being sent by the send statement. If this value is not specified, the default
characters ^m^j are assumed.
ignore is the list of input characters to be ignored. All characters specified will be ignored. If this value is
not specified, the default character ^j is assumed. length is the input message length parameter. When the
specified number of characters is received, a message is considered to be complete and the recv statement
will be satisfied. When zero is specified as the length, then messages are terminated by the inend character
sequence. The default is zero. If both length and inend are defined, then first condition to occur causes the
message to be considered complete.

Page 56

The comctl operation is typically used to control serial communications and to return information for
TCP communications. comctl may also be used to return the error condition on a commuication failure.
Use "GETERROR" as input after receiving an I 753 error. Use "GETSENDERROR" as input if comtst
returns with equal and eos set. Use "GETRECVERROR" as input if comtst returns with less and over set.
Output will contain an error message regarding the error or "TIMEOUT" if the send or recv statement
timed out.
The comctl operation controls the settings of control signals on serial ports. The character variable
operand may contain zero or more of the following characters with these meanings:

R the RTS line will be set high
r the RTS line will be set low
T the DTR line will be set high
t the DTR line will be set low
C characters will be sent only when CTS is high
c characters will be sent regardless of CTS
S characters will be sent only when DSR is high
s characters will be sent regardless of DSR
L characters will be sent only when DCD is high
l characters will be sent regardless of DCD
X enable XON/XOFF processing
x disable XON/XOFF processing

On return, the comctl statement will change the character variable operand to contain a length four string
containing upper or lower case characters these characters with these meanings:

C the CTS line is high or
c the CTS line is low, followed by
S the DSR line is high or
s the DSR line is low, followed by
L the DCD line is high or
l the DCD line is low, followed by
B the RI line is high or
b the RI line is low

The default values in effect after a comopen are: RTcSlx. Not all control signals are available on all
operating systems.
For serial ports, the comctl statement also supports the following keywords:

INSTART=value the input message start character string
INEND=value the input message termination character sequence
OUTSTART=value the output message start character string
OUTEND=value the output message termination character sequence
IGNORE=value the list of input characters to be ignored
LENGTH=value the input message length parameter

Setting of values is the same as comopen. On return, the comctl statement will change the character
variable operand to contain the input keyword and the value of the keyword prior to the comctl. This
string returned may be used as input to comctl to reset the value back to the previous setting.

TCP/IP
The TCP/IP implementation of the communications statements gives the DB/C programmer direct
access to the two most important Internet protocols, TCP and UDP, and to the DNS service.
TCP communications takes place between two endpoints (also referred to as sockets). Endpoints are
uniquely determined by their IP address and port number. An IP address is unique to the machine the
endpoint is on, and is specified in one of two ways, for example:
 216.58.161.16
 ftp.dbcsoftware.com

Page 57

These addresses are actually the same. The first is the four byte address used by the IP protocol. It is
typically written like nnn.nnn.nnn.nnn where each nnn is a value between 0 and 255, inclusive. The
second address is in domain name format. The purpose of a Domain Name Server (DNS) is to convert a
domain name to its IP address.
The port number element of an endpoint is a value from 1 to 65,536.
Thus for any given machine with a single IP address, there are 65,536 unique endpoints. In practice, most
operating systems allow a much smaller number of endpoints to be active at any one time.
Port numbers are broken down into ranges that are available for different kinds of services. Ports 1 to
1023 are the "well known port numbers". For example, port 23 is the telnet port. This means that telnet
server software listens for telnet clients on port 23.
Port numbers 1024-5000 are the "ephemeral port numbers". These port numbers are assigned to
applications that request use of an endpoint without specifying a port number. This behavior is typical of
a client application. These endpoints tend to exist for a limited time, hence the name ephemeral.
Port numbers above 5000 are available to server applications by specific request. Server programs must
use endpoints with predetermined addresses so that clients know where and how to connect with
servers.
The comopen statement is used to open a TCP connection. There are two ways to open a TCP connection,
one as the client and the other as the server. Here is an example of how to open the client end of a
connection:
cfile comfile
 comopen cfile, "TCPCLIENT ftp.dbcsoftware.com 21"

Just as with other types of communications operations, a comfile variable is used as the anchor for a
session or connection. The TCPCLIENT keyword in the last operand specifies that the client connection is
to be opened. One or more blanks separate each of the three values in the last operand. The second value
is the IP address or DNS name.
In the example, ftp.dbcsoftware.com is the domain name. The third value is the port number.
After the connection is made, the endpoint on the client end of the connection will have the IP address of
the client machine and an ephemeral port number that the operating system assigns to it. You can use the
comctl statement to retrieve the IP address of an endpoint, like this:
ctl char 50
cfile comfile
 comopen cfile, "TCPCLIENT 216.58.161.16 21"
 move "GETLOCALADDR" to ctl
 comctl cfile, ctl

The local address and port are moved into the variable named ctl.
Here is an example of opening a TCP server connection:
cfile comfile
 comopen cfile, "TCPSERVER 21"

When TCPSERVER is used in the comopen statement, a server endpoint is opened waiting for incoming
connections. The IP address is that of the local machine, and the port number that is specified in comopen
statement. In this example, 21 is the port number. When another application connects to this endpoint, the
connection is made on another port on the server computer. This insures that another comopen using the
original port will continue to wait for connections on the original port. This means that after a connection
is completed the comctl statement will return a different port number than the port number specified in
the comopen statement.
IPv6 is supported. For TCPCLIENT, both IPv4 and/or IPv6 connections are attempted depending on the
operating system. If TCPSERVER4 is specified, the server port opened will be for IPv4. If TCPSERVER6
is specified, the server port opened will be for IPv6. If TCPSERVER is specified, either IPv4 or IPv6 may
be selected depending on the configuration of the computer.

Page 58

Here is an example of opening multiple server connections on a port:
cfile1 comfile
cfile2 comfile
cfile3 comfile
 comopen cfile1, "TCPSERVER 9999"
 comopen cfile2, "TCPSERVER 9999"
 comopen cfile3, "TCPSERVER 9999"

Messages are transmitted using the send and recv statements. In the case of both TCPCLIENT and
TCPSERVER, the send and recv statements will only be satisfied after the connections are actually made.
The success of a comopen statement with the TCPCLIENT keyword means that the socket was
successfully opened.
The syntax of the send and recv statements is as follows:
 send comfile, numvar; list

recv comfile, numvar; list

The timeout value is specified by the numvar operand and is specified in seconds. A value of zero means
an immediate timeout. A negative value means no timeout.
TCP is a stream based protocol. A send statement will set the comfile variable to the send completed state
when the requested list has been sent or a timeout or error occurs. The recv statement is slightly different.
The comtst statement will indicate that a recv statement has successfully completed as soon as any
amount of data is available. This means that any use of message boundaries must be provided for by the
application.
UDP is a connectionless, message based protocol. Here is an example of how to open an endpoint for
UDP communications:
cfile comfile
 comopen cfile, "UDP 8000"

This comopen statement opens an endpoint with the IP address of the local machine and the port number
specified by the value after the UDP identifier. The comctl statement returns the IP address and port
number the same way as it does for TCP.
A send or recv statement on a UDP endpoint results in a whole message being sent or received. In order
to specify the destination for sending a message, the comctl statement is used. Here is an example:
cfile comfile
ctl char 50
msg init "hello"
time int "-1"
 comopen cfile, "UDP 11005"
 move "SETSENDADDR 207.208.157.42 10005" to ctl
 comctl cfile, ctl
 send cfile, time; msg
 comwait cfile
 comtst cfile
 if (equal and not eos)
 display "success"
 else
 display "error"
 endif

This example will cause UDP messages to be sent from local port 11005 to port 10005 on the machine at
207.208.157.42.
After a UDP message has been received, the comctl statement can be used to find out where it came from.

Page 59

In the following example, if the recv is successful, the IP address and port number of the program that
sent the message will be placed in the variable ctl:
cfile comfile
ctl char 50
msg char 5
time int "-1"
 comopen cfile, "UDP 10005"
 recv cfile, time; msg
 comwait cfile
 comtst cfile
 if (less and not over)
 display "success"
 move "GETRECVADDR" to ctl
 comctl cfile, ctl
 else
 display "error"
 endif

Page 60

Writing Portable Programs

When certain rules are followed, DB/C programs can be completely independent of the operating
system. More specifically, any compiled program (.dbc file) or source chain file will run without
modification on any version of DB/C DX. The following is a list of the rules that must be followed to
achieve complete operating system independence:
1. The rollout and execute statements must run only DB/C DX utility programs.
2. All file names (in open statements, utilities, etc.) must be in standard DB/C file name format or in a
Datapoint file name format using the dbcdx.file.compat runtime property.
The format of a standard DB/C file name is:

name.ext:volume
name is one to eight characters long
ext is one to three characters long
volume is one to eight characters long

The standard DB/C file name is not a valid file name for any operating system.
The format of a non-standard file name is any format other than a standard DB/C file name, but still a
valid file name format for the runtime operating system. Some operating systems differentiate between
upper and lower-case letters in file names. In other operating systems, no distinction is made.
3. Use only DB/C-type files. Use of text, native, or binary type files may cause portability problems.
When other than DB/C files are used, certain statements (such as fposit) may work differently on
different versions of DB/C.
4. The utilities should be renamed to names that are not duplicates of built-in commands in the operating
system. Suggested names are: dcopy, dcreate, ddelete, drename, and dsort.
5. Splopen of devices must not be used. Some operating systems do not support opening devices as files.
6. Any other device dependencies (such as octal characters in print statements) should not be used.

Page 61

Windows Considerations

System Requirements
DB/C DX for Windows requires an x86-based 64-bit version of Windows that is Windows 7 or newer.
The Windows runtime interpreter is dbc.exe.

Keystroke Definition
The keyboard usually has F1 through F12 keys and a backspace key. The break key is the Ctrl-C or the
Ctrl-Break key. Specifying the dbcdx.keyin.break=off runtime property will enable the Ctrl-C character
to pass through and Crl-Break will be ignored.

File Names
Standard Windows file names are of the form:
[drv :] [\dir...] name [.ext]
The drv and dir specifications constitute the path name. The drv specification is one character. A file name
like a:xyz will be considered a non-standard file name (file xyz on drive a). A file name like ab:xyz will be
considered a standard DB/C file name (file ab on volume xyz).
No distinction is made between lower and upper-case letters in file names. For example, xyz.txt and
xyz.TXT are the same file.

Characters
The -t command line option and the text option in file, ifile, and afile declarations are implemented with
the ASCII character set.
The end-of-record specifier is CR, LF (carriage return followed by line feed, or hex values 0D,0A).
Records deleted by the delete statement are replaced with DEL (hex 7F).
Some older programs may use the Ctrl-Z character to signal end-of-file, so DB/C will recognize existing
Ctrl-Z (hex 1A) end-of-file marks.

Size of the Screen
The runtime properties
dbcdx.display.columns=number
dbcdx.display.lines=number

specify the number of columns and lines available for keyin and display. The default is 80 by 25.

Printing
The default system printer is LPT1.
The default system printer may be used by specifying splopen with a printer name of DEFAULT. The size
of each print dot is one printer resolution dot. This may be modified by enclosing the requested size in
parentheses after the printer name. For example:
 splopen "DEFAULT(300)"

causes the default system printer to be opened with a resolution of 300 dots per inch. Any printer name
defined by the Windows Print Manager is a valid name for the splopen statement.
There are five output types when printing with the Windows version of DB/C DX. They are: FILE,
RECORD, DEVICE, COOKED, and RAW.
The FILE output type means that print output is sent to a file in the file system. Pixel level and graphical
print controls may or may not be supported depending on the output format.

Page 62

The RECORD output type is almost the same as FILE. It is used only when the output format is CC (see
below). The output file is a runtime operating system text file. The expectation is that the record
separaters will not be interpreted by the printer. Pixel level and graphical print controls are not supported
by this output type.
The DEVICE output type means that printing goes directly to an attached device, for example LPT1. Pixel
level and graphical print controls may or may not be supported depending on the output format.
The COOKED output type means that the print commands are passed through the Windows printing API
to the Windows printer driver. Pixel level and graphical print controls are supported. This is the most
portable Windows printer output type.
The RAW output type causes output to be sent to the printer unmodified. Pixel level and graphical print
controls may or may not be supported depending on the output format.
There are five output formats. They are: Device Control Characters (DC), Carriage Control Characters
(CC), PDF, PCL and PostScript.
The DC output format uses standard ASCII device control characters for form feed, line feed, and carriage
return. Pixel level and graphical print controls are not supported by this output format.
The CC output format causes a carriage control character to be put in the first character position of each
record. The carriage control characters are: "1" (top of form), "+" (no vertical skip) and blank (next line). If
the output is to a file it will be a runtime operating system text file. Pixel level and graphical print
controls are not supported by this output format.
The PDF output format produces Portable Document Format output. Pixel level and graphical print
controls are supported by this output format.
The PCL output format produces Printer Control Language output. Pixel level and graphical print
controls are supported by this output format.
The PostScript output format produces PostScript output. Pixel level and graphical print controls are
supported by this output format.
When the splopen statement is executed, the output type is determined by examining the file or device
name. The splopen options may override the output type.
If the print destination name is PRN, AUX, NUL, LPTn, LPTnn, COMn, or COMnn where n is a decimal
digit, then the destination type is DEVICE. If the name is not DEFAULT and the name is not a match for
anything in the Windows Printers folder then the destination type is FILE. Otherwise, if the name
contains parentheses as described above then the output type is COOKED, otherwise the output type is
RAW.
The L splopen option may alter the output type and format. The following table shows the resulting print
output type for various combinations of destination names and L options.

notes: 1. Raw PDF is sent to the printer
2. Print languages don't support (dpi), forced to L=NATIVE

named printer named printer (dpi) print file

none COOKED COOKED RECORD

L=NONE RAW ERROR P 411 RECORD

L=NATIVE COOKED COOKED RECORD

L=PDF RAW (note 1) COOKED (note 2) FILE

L=PCL RAW (note 3) COOKED (note 2) FILE

L=PS RAW (note 4) COOKED (note 2) FILE

Page 63

3. Raw PCL is sent to the printer
4. Raw PS is sent to the printer

Additional Information about SPLOPEN Options
B=bin This option only works if the output type is COOKED. Each printer driver has its own set of

paper bin options that it will recognize. Use the getpaperbins statement to obtain a list of
available bins.

I If output is to a file, and the SUBMIT option of the splopen statement is used, then no
trailing form feed will be sent to the printer. Otherwise it is ignored.

J This option will set the output type to COOKED, exactly as if L=NATIVE was specified. A
standard Windows print dialog box will be displayed.

L=lang This is the print output language option. This option sets the output format and may affect
the output type. See the chart on the preceding page for the combinations of destination
name and L option.

N This option works with COOKED output type only.
O=orientation This option works with the COOKED output type. It will work with FILE, RAW, and

DEVICE output types if the output format is PCL, PDF, or PostScript.
S=size If the output type is COOKED then size must be one that is supported by the printer driver of

the printer being opened by the splopen statement. It will be used for RAW, DEVICE, and
FILE output types if the output format is PCL, PDF, or PostScript. If the output format is PDF,
PCL, or PostScript then valid values for size are:

 LETTER
 LEGAL
 COMPUTER
 A3
 A4
 B4
 B5

W This option works only with COOKED output type.
Y=text This option sets the document name as it appears in the printer queue window. It only works

with COOKED and RAW output types.

Additional Information about SPLCLOSE Options
SUBMIT [=string] This option assumes that the output is to a file. If string is not specified the file will be

submitted to the default printer. Otherwise the file will be submitted to the printer named
string. If string is not recognized by the operating system a P 452 error will occur.

CLOCK Return Values
clock version returns "Windows".
clock port returns "001". This may be altered by the dbcdx.clock.port runtime property.
clock user returns the login name.
The pp characters returned by clock timestamp will correctly report hundredths of a second.

PAUSE and TRAP
The pause, trap timeout and trap timestamp statements support hundredths of a second.

Page 64

Linux Considerations

This chapter contains information about Linux support for DB/C DX. The character mode interface is the
only user interface that is supported directly on the computer console or via TTY (e.g. ssh) interface. The
GUI features of DB/C DX are supported by using Smart Client.

Keystroke and Display Definitions
The break key is the interrupt control character (stty intr). Specifying the dbcdx.keyin.break=off runtime
property will cause the interrupt control character to be ignored. Some Linux systems define Ctrl-Z as the
suspend control character (stty susp). This will conflict with the DB/C default interrupt key. This conflict
can be resolved using the dbcdx.keyin.interrupt runtime property or the Unix stty(1) command.
If the dbcdx.display.termdef runtime property is used, it controls all keystroke definitions and display
functions. If it is not used, then the terminfo database is used.
The following functions are available if the respective terminfo entry is defined:

Function terminfo code

initialize terminal scmcup, smkx

screen erased with background color bce

number of lines lines

number of columns cols

*p=h:v, *n, *c, *l cup, hpa, vpa
*es clear
*ef ed
*el el

underline cursor on cnorm

block cursor on cvvis

cursor off civis
*r ind
*rd ri
*setswtb csr
*dellin dll
*inslin il1
*delchr dch1
*inschr ich1

*revon, *hon smso
*revoff rmso
*ulon smul
*uloff rmul

*dion, *v2lon, *boldon bold
*blinkon blink

Page 65

notes: 1. If kbs is not defined in the termdef, then Ctrl-H is the backspace keystroke.
2. Ctrl-J and Ctrl-M are used for the enter keystroke.

3. Ctrl-I is used for the tab keystroke.
4. Ctrl-[is used for the escape keystroke.

File Names
In Linux, file names are of the form:
[/dir...] name [.ext]
The directory specification constitutes the path name.
There is a distinction between lower and upper-case letters in file names. For example, xyz.txt is not the
same file as xyz.TXT.
Opening file names that have no extension is supported in Linux. If the file name specified in the open
statement ends in a period, then the period is removed and no extension is added. If the file name ends in
two periods, then one period is removed.

Characters
The text option in file and ifile declarations is implemented with the ASCII character set.

Function terminfo code
*dimon dim

*dioff, *boldoff, *blinkoff, *dimoff sgr0
*b bel
*pon mc5
*poff mc4

*hln, *vln, and other line control codes acsc, smacs, rmacs
*color max_colors, setf, setaf
*bgcolor max_colors, max_pairs, setb, setab

F1, F2, ... F20 keystrokes kf1, kf2, ... kf20

page up keystroke kpp

page down keystroke knp

right keystroke kcuf1

left keystroke kcub1

up keystroke kcuu1

down keystroke kcud1

insert keystroke kich1

delete keystroke kdch1

home keystroke khome

end keystroke kend

backspace keystroke (note 1) kbs

back tab keystroke kcbt

Page 66

The end-of-record specifier is LF (line feed, or hex 0A).
Records deleted by the delete statement are replaced with DEL (hex 7F).
There is no end-of-file character. The end-of-file position is maintained by the operating system.
Tab character expansion on read is not supported. Any tab character encountered is translated to a single
blank character.

Printing
The default system printer is /dev/lp.
There are four print output types. They are: FILE, DEVICE, PIPE, and CUPS (Common Unix Printing
System).
The FILE output type means that print output is sent to a file in the file system. Pixel level and graphical
print controls may or may not be supported depending on the output format.
The DEVICE output type means that printing goes directly to an attached device, for example, /dev/lp.
Pixel level and graphical print controls may or may not be supported depending on the output format.
The PIPE output type assumes that the first operand of SPLOPEN is a command line which is started as a
separate process. Print output is sent as standard input to this process
The CUPS output type means that the print job will be submitted to CUPS.
There are five output formats. They are: Device Control Characters (DC), Carriage Control Characters
(CC), PDF. PCL and PostScript.
The DC output format uses standard ASCII device control characters for form feed, line feed, and carriage
return. Pixel level and graphical print controls are not supported by this output format.
The CC output format causes a carriage control character to be put in the first character position of each
record. The carriage control characters are: "1" (top of form), "+" (no vertical skip) and blank (next line). If
the output is to a file it will be a runtime operating system text file. Pixel level and graphical print
controls are not supported by this output format.
The PDF output format produces Portable Document Format output. Pixel level and graphical print
controls are supported by this output format.
The PCL output format produces Printer Control Language output. Pixel level and graphical print
controls are supported by this output format.
The PostScript output format produces PostScript output. Pixel level and graphical print controls are
supported by this output format.
When SPLOPEN is executed, the output type is determined by examining the file or device name. The
SPLOPEN options may override the output type.
If the P option is specified then the output type is PIPE. If the first five characters are /dev/ then the
output type is DEVICE. If the destination name begins with lp or lpr then the output type is PIPE. If
CUPS is installed and the destination name is recognized by the CUPS daemon as a CUPS destination,
then the output type is CUPS. Otherwise the output type is FILE.

Additional Information about SPLOPEN Options
B=bin This option is only applicable to the CUPS output type. Use the getpaperbins statement to

obtain a list of available bins.
BANNER This option is only applicable to the CUPS output type. It causes a banner page to print.
I This option is used only if output is to a file, CUPS is not installed, and the SUBMIT option of

SPLOPEN is used. Otherwise it is ignored.
J This option is ignored on Linux systems, unless running with Smart Client.

Page 67

L This option works for all four output types. When using CUPS output, the CUPS system may
be configured to pass the output through a filter. Refer to CUPS documentation for details.

N This option works with FILE output in conjunction with the SUBMIT option of the splclose
statement. It also works with CUPS output.

O=orientation This option works with the CUPS output type. It will work with FILE, PIPE, and DEVICE
output types if the output format is PCL, PDF, or PostScript. It will work with FILE output if
the SUBMIT option of the splclose statement specifies a CUPS destination.

P This option will open a pipe to the executable named in the first operand. If the first operand
of SPLOPEN begins with lp or lpr then this option is assumed. The first operand can contain
arguments to the command. The splclose statement closes the pipe. For example:

 splopen "lp -ddest -n2", "p"
 print "Printing 2 copies to destination dest"
 splclose

S=size If the output type is CUPS then size must be one that is supported by the printer
configuration of the print destination being opened by the splopen statement. This option
will work with the FILE output type if the SUBMIT option of the SPLCLOSE statement
specifies a CUPS destination. This option will work for FILE and DEVICE output types if the
output format is PCL, PDF, or PostScript. If the output type is PDF, PCL, or PostScript then
values for size are:

 LETTER
 LEGAL
 COMPUTER
 A3
 A4
 B4
 B5

W This option works only with CUPS output type, or FILE output type if the SUBMIT option of
the splclose statement specifies a CUPS destination.

Y=text This option sets the job name. It only works with the CUPS output type.

Additional Information about SPLCLOSE Options
SUBMIT [=string] This option assumes that the output was to a file. The file will be submitted to the lpr or

lp command. If string is supplied, string will be used as the destination name.

CLOCK Return Values
clock version returns "UNIX".
clock port returns a length three string that contains the terminal number. For example, if the terminal is /
dev/tty02, then clock port returns "002". The string will always be filled with zeros on the left. The string
may contain alphabetic characters in cases where the port is prefixed with /dev/tty and less than three
digits on the end. For example, /dev/ttya1 returns "0a1". This may be altered by the dbcdx.clock.port
runtime property.
clock user returns the user ID from log in.
The pp characters returned by clock timestamp will correctly report hundredths of a second.

PAUSE and TRAP
The pause, trap timeout and trap timestamp statements support hundredths of a second.

Sound
The sound statement is implemented like the beep statement. The operands for the pitch and the duration
of the tone are ignored.

Page 68

Click
The *click control code of the display statement and the *clickon control code of the keyin statement are
ignored.

Page 69

C Interface

Writing ccall and cverb Routines
The ccall and cverb functions, usually written in the C language, are called from the DB/C DX source
program. A ccall routine is called by executing a ccall statement in a DB/C program. A cverb routine is
called by executing a verb defined as a user defined verb with the cverb statement.
A ccall statement has the following format:

label ccall charexp prep list
charexp is the first operand
list is a list of variables or literals

The ccall function is compiled and linked into the DB/C DX runtime. The name of the C function is ccall.
The linkage to ccall is:

void ccall(unsigned char *name, unsigned char **list)

The cverb function is similar. The linkage is:
void cverb(unsigned char *name, unsigned char **list)

The parameter name is a pointer to the variable that is the first operand of the ccall operation or is the
name of the cverb. The parameter list is a pointer to an array of pointers that each point to the variables
that make up the list. The last pointer in the array of pointers has a null value.
The information necessary to compile and link the ccall function is different for each version of DB/C DX.
The dxreadme.txt file supplied on the distribution media contains this information.
The following paragraphs describe the internal representation of variables.
There are two kinds of character variables: small and large. Small character variables are defined as char
127 or smaller. Large character variables are defined char 128 and larger.
A small character variable is stored as a string of bytes that is three bytes longer than the size of the
variable. Three header bytes precede the actual characters that make up the character variable. Each of
these header bytes is considered to be an unsigned character that contains a value between 0 and 127,
inclusive. The first byte is the form pointer. The second byte is the length pointer. The third byte is the
maximum length (or physical length) of the variable. The maximum length does not include the three
header bytes. Because the value of the form pointer can only contain a value between 0 and 127, the high-
order bit is always 0. This fact is used to distinguish small character variables from other types of
variables.
A large character variable is stored as a string of bytes that is seven bytes longer than the variable. Seven
header bytes precede the actual characters that make up the character variable. The first byte is decimal
240. This byte signifies that what follows is a large character variable. The second and third bytes are the
form pointer in ll,hh format. The fourth and fifth bytes are the logical length pointer in ll,hh format. The
sixth and seventh bytes are the maximum length (or physical length) of the variable in ll,hh format. The
maximum length does not include the seven header bytes.
A form variable is stored as a string of bytes that is one byte longer than the variable. The header byte
precedes the actual characters that make up the numeric variable. In the header byte, the high-order bit
always contains the value 1, the next two bits contain the value 0 and the low five bits are the length of
the numeric variable, not including the header byte.
An integer variable is stored as six bytes. The first byte is decimal 252. The second byte contains the
format of the variable. This format is the number of decimal digits to which the value will be expanded
when it is accessed for any operation other than a calculation. The following four bytes make up the 32-
bit integer value stored in the correct format for the machine on which DB/C DX is running. Note that
these bytes may not be aligned correctly for machines that are unable to do operations on an odd address.
A float variable is stored as ten bytes. The first byte has a value of 248, 249, 250, or 251. The low-order two
bits of the first byte plus the eight bits of the second byte form the 10-bit format of the variable. The high-

Page 70

order five bits define the number of digits to the left of the decimal point and the low-order five bits
define the number of digits to the right of the decimal point. The remaining eight bytes contain the
double float value in the correct format for the machine on which DB/C DX is running. Note that these
bytes may not be aligned correctly for some machines.
Numeric and character literals are stored as a string of bytes that is 2 bytes longer than the variable. Two
header bytes precede the actual characters that make up the literal. The first byte of the header is 224 for a
numeric literal and 225 for a character literal. The second byte of the header is the length of the literal, not
including the header bytes.
Several C functions are available to provide various services for ccall routines.

int dbcgetflags(void);

Return the values of the four flags. The low-order bit of the return value is the value of the eos flag; the
next bit is the value of the equal flag; the next bit is the value of the less flag; the next bit is the value of
the over flag. In other words:

(dbcgetflags()&0x01) is eos
(dbcgetflags()&0x02) is equal
(dbcgetflags()&0x04) is less
(dbcgetflags()&0x08) is over

void dbcseteos(int value);

Set or clear the value of the eos flag. If value is zero, clear the eos flag. If value is non-zero, set the eos flag.

void dbcsetequal(int value);

Set or clear the value of the equal flag. If value is zero, clear the equal flag. If value is non-zero, set the
equal flag.

void dbcsetless(int value);

Set or clear the value of the less flag. If value is zero, clear the less flag. If value is non-zero, set the less
flag.

void dbcsetover(int value);

Set or clear the value of the over flag. If value is zero, clear the over flag. If value is non-zero, set the over
flag.

int dbcgetparm(unsigned char **list);

Return the next parameter for the list of non-positional and keyword parameters. list points to an array of
6 pointers that point to the 6 possible parameters of an operand. The first pointer points to a keyword
literal. The next 5 pointers point to the variables or literals that make up the parameters of the keyword
operand. If the operand was a non-positional operand (it did not contain a keyword), the first pointer is
null.
If dbcgetparm is called after the last parameter has been retrieved, -1 is returned. is called after the last
parameter has been retrieved, -1 is returned. Otherwise the value returned is the number of parameters
after the keyword. This value can be 0, 1, 2, 3, 4 or 5.

void dbcresetparm(void);

The position for dbcgetparm is reset so the next dbcgetparm retrieves the first non-positional or keyword
operand in the statement.

Page 71

void dbcdeath(int code);

Terminate the DB/C DX runtime with the internal error number specified by code.
The following C code ascertains what kind of variable is the first variable from the list and then calculates
the size of the variable:
ccall(unsigned char *name, unsigned char **list) {
 int formptr; /* form pointer */
 int loglen; /* logical length */
 int maxlen; /* maximum length */
 unsigned char *ptr; /* work pointer */
 int i; /* work variable */
 ptr = list[0];
 if (ptr[0] < 0x80) { /* small CHAR var */
 formptr = ptr[0];
 loglen = ptr[1];
 maxlen = ptr[2];
 }
 else if ((ptr[0] & 0xe0) == 0x80) { /* FORM var */
 maxlen = ptr[0] & 0x7F;
 }
 else if ((ptr[0] & 0xFC) == 0xF8) { /* FLOAT var */
 maxlen = ((ptr[0] & 3) << 3) + (ptr[1] >> 5);
 if (i = (ptr[1] & 0x1F)) maxlen += i + 1;
 }
 else if (ptr[0] == 0xFC) { /* INT var */
 maxlen = ptr[1] & 0x1f;
 }
 else if (ptr[0] == 0xF0) { /* large CHAR var */
 formptr = ptr[1] + ((int) ptr[2] << 8);
 loglen = ptr[3] + ((int) ptr[4] << 8);
 maxlen = ptr[5] + ((int) ptr[6] << 8);
 }
 else if (ptr[0] == 0xE0) { /* numeric literal */
 maxlen = ptr[1];
 }
 else if (ptr[0] == 0xE1) { /* character literal */
 maxlen = ptr[1];
 }
 /* else unsupported type */
}

Writing Communication Routines
The communications statements (comopen, send, recv, etc.) are described in the Executable Statements
chapter of this manual. If support for different hardware or other features is required, then the standard
functions of the communications routines can be replaced with custom-written routines. This section
describes how to write these routines.
The dxreadme.txt file found on the DB/C DX distribution media contains information describing how to
compile and link a ccall function with the DB/C DX runtime. The communications module is incorporat-
ed with the DB/C DX runtime in the same manner. The compiled communications routines are contained
in a module named com.obj or com.o, depending on the operating system.
All the functions described in the following paragraphs must be provided in the com module. All these
functions except comexit may call the abnormal termination function named dbcdeath. In the following
descriptions, true is 1 and false is 0.

Page 72

int cominit(void);

Initialize the communications routines. This routine will be called once by the DB/C DX runtime before
any other com routines are called. If cominit is successful, zero is returned; otherwise, a non-zero value is
returned. If a non-zero value is returned, than an I/O error occurs.

void comexit(void);

Terminate all channels and clear the communications functions for program termination. This function
will be called once at normal or abnormal (DB/C DX internal error) termination of the DB/C DX runtime.

int comopen(char *command, int *handle);

Open a communications channel as specified by command. A channel corresponds to a comfile
declaration. The parameter command points to a zero delimited string that contains the file or device
name, or TCP/IP socket description specified in the comopen statement. The parameter handle is a
pointer to an integer. If comopen is successful, handle should be set to a positive channel number. If
comopen is successful, zero is returned; otherwise, a non-zero value is returned. If a non-zero value is
returned, than an I/O error occurs.

int comclose(int channel);

Close the communications channel specified by the parameter channel, which is the channel number set
by comopen. If comclose is successful, zero is returned; otherwise, a non-zero value is returned. If a non-
zero value is returned, than an I/O error occurs.

int comrecv(int channel, int evtid, int timeout, int count);

Initiate the receiving of a message through the channel specified by the parameter channel. This function
is called in response to the recv statement. The parameter evtid is the event handle that should be set by
evtfunc1 when the receive is completed. The function should clear the event handle by calling evtfunc2
before beginning the receive. The parameter timeout is the amount of time that the com module should
wait before considering the receive attempt to have failed. A positive value designates a positive number
of seconds. A value of zero designates an immediate timeout. A negative value designates that no timeout
should occur. The parameter count is the maximum number of bytes that should be received by this call.
If comrecv successfully initiates the receive process, the status of the channel is set to receive pending
(COM_RECV_PEND) and comrecv returns zero; otherwise, a non-zero value is returned. If a non-zero
value is returned, than an I/O error occurs.

int comrecvget(int channel, unsigned char *msgptr, int *msglen);

Return the message received by comrecv. This function is called in response to the event handle
provided by comrecv being set. The parameter msgptr is a pointer to the area in which the message will
be stored. The parameter msglen is a pointer to an integer that is the maximum length for the message to
be stored in the message area pointed to by msgptr. The msgptr area will remain valid until a comclear
call is made by the DB/C DX runtime. On return, the integer pointed to by msglen will contain the actual
length of the message that was received. If comrecvget is successful, than zero is returned; otherwise, a
non-zero value is returned. If a non-zero value is returned, than an I/O error occurs.

int comsend(int channel, int evtid, int timeout, unsigned char *msgptr,
 unsigned char *msglen);

Initiate the sending of a message through the channel specified by the parameter channel. This function is
called in response to the send statement. The parameter evtid is the event handle that should be set by
evtfunc1 when the send is completed. The function should clear the event handle by calling evtfunc2
before beginning the send. The parameter timeout is the amount of time that the com module should
wait before considering the send attempt to have failed. A positive value designates a positive number of
seconds. A value of zero designates an immediate timeout. A negative value designates that no timeout

Page 73

should occur. The parameter msgptr is a pointer to the message to be sent. The parameter msglen
contains the length of the message. The msgptr area will remain valid until a comclear call is made by the
DB/C DX runtime. If comsend successfully initiates the send process, the status of the channel is set to
send pending (COM_SEND_PEND) and comsend returns zero; otherwise, a non-zero value is returned.
If a non-zero value is returned, than an I/O error occurs.

int comstat(int channel, int *status);

Provide the status for the channel specified by the parameter channel. The parameter status is a pointer
to an integer that will be set to the status of the channel. If comstat is successful, zero is returned;
otherwise, a non-zero value is returned. If a non-zero value is returned, than an I/O error occurs. The bit
values for the status are:
COM_SEND_PEND = 0x00000001 comsend in progress
COM_SEND_DONE = 0x00000002 comsend completed successfully
COM_SEND_TIME = 0x00000004 comsend timed out
COM_SEND_ERROR = 0x00000008 comsend ended with an error
COM_RECV_PEND = 0x00000010 comrecv in progress
COM_RECV_DONE = 0x00000020 comrecv completed successfully
COM_RECV_TIME = 0x00000004 comrecv timed out
COM_RECV_ERROR = 0x00000080 comrecv ended with an error
COM_PER_ERROR = 0X00010000 permanent error condition exists

int comclear(int channel, int *status);

Clear the pending operations for the channel specified by the parameter channel, and set the status to
idle. The parameter status is a pointer to an integer that is set to the status of the channel before it is
cleared. If a permanent error condition exists, it should not be cleared. On success, comclear returns zero;
otherwise a nonzero value is returned. If a non-zero value is returned, than an I/O error occurs.

int comsclear(int channel, int *status);

Clear the send operation for the channel specified by the parameter channel. Set the integer pointed to by
the parameter status to the status of the channel before it is cleared. On success, comsclear returns zero;
otherwise a non-zero value is returned. If a non-zero value is returned, than an I/O error occurs.

int comrclear(int channel, int *status);

Clear the receive operation for the channel specified by the parameter channel. Set the integer pointed to
by the parameter status to the status of the channel before it is cleared. On success, comrclear returns
zero; otherwise a non-zero value is returned. If a non-zero value is returned, than an I/O error occurs.

int comctl(int channel, unsigned char *msgin, int msginlen,
 unsigned char *msgout, int *msgoutlen);

Send and receive control information for the channel specified by the parameter channel. . The parameter
msgin points to a zero delimited string that contains the incoming control information. The length of this
control information is specified by the parameter msginlen. comctl returns control information in a zero
delimited string in the area pointed to by msgout. The maximum length of this string is specified in the
integer pointed to by msgoutlen. On return, msgoutlen should be set to the length of the string placed in
msgout. On success, comctl returns zero; otherwise a non-zero value is returned. If a non-zero value is
returned, than an I/O error occurs.

Implementing Native Files
Native files are files that are accessed through file or ifile declarations which have the native option
specified. This section describes how to write the functions that support this feature.

Page 74

The dxreadme.txt file distributed with DB/C DX contains information describing how to compile and
link a ccall function with the DB/C DX runtime. The native file interface module is incorporated with the
runtime in the same manner. The compiled routines are contained in a module named nio.obj or nio.o,
depending on the operating system.
All the functions described in the following paragraphs must be provided in the nio module. All these
routines may call the DB/C DX abnormal termination routine named dbcdeath.
For all nio functions, a negative return value indicates that the operation was unsuccessful and an error
may have occurred. A return value of -1 indicates that a system error was encountered or the called
interface is not available. A return value of -98 is reserved for user-defined errors. A return value of -99 is
reserved for DB/C DX defined errors.

int nioopen(char *name, int index, int exclusive);

Open a file. The parameter name points to a zero delimited string that contains the file name specified in
the open statement. If the index parameter is zero, then the open is from a file declaration. Otherwise, the
open is from an ifile declaration. The value of index is the value of keylen or -1 if keylen is not specified.
The value of index may be used to refer to the index key in a file that contains multiple keys or it may be
used for any user-defined purpose. If the parameter exclusive is non-zero, the file should be opened in
exclusive mode. Otherwise, open the file in shared mode. If the return value is non-negative, then the
open succeeded and the return value is the handle to be used for further access. If the return value is
negative, then a DB/C DX runtime I/O error occurred. A return value of -2 indicates that the file was not
found. A return value of -3 indicates that an access violation occurred when the file was opened.

int nioprep(char *name, char *options, int index);

Prepare a file. The parameter name points to a zero delimited string that contains the file name specified
in the open statement. The parameter options points to a zero delimited string that contains prepare
options. If the index parameter is zero, then the open is from a file declaration. Otherwise, the open is
from an ifile declaration. The value of index is the value of keylen or -1 if keylen is not specified. The
value of index may be used to refer to the index key in a file that contains multiple keys or it may be used
for any user-defined purpose. If the return value is non-negative, then the prepare succeeded and the
return value is the handle to be used for further access. If the return value is negative, then a DB/C DX
runtime I/O error occurred. A return value of -2 indicates that the directory or drive was not found. A
return value of -3 indicates that an access violation occurred when the file was created.

int nioclose(int handle);

Close the file specified by the parameter handle. If the return value is non-negative, then the operation
was successful. If the return value is negative, then a DB/C DX runtime I/O error occurred.

int niordseq(int handle, unsigned char *buffer, int length);

Read the next record sequentially. The parameter handle specifies the file. The record is moved to the area
pointed to by the parameter buffer. The record length is specified by the parameter length. If the return
value is non-negative, then the operation was successful and the return value is the length of the record
that was moved to the buffer. If the end of file is encountered, the return value is -2. Otherwise, if the
return value is negative, then a DB/C DX runtime I/O error occurred.

int niowtseq(int handle, unsigned char *buffer, int length);

Write a record sequentially. The parameter handle specifies the file. The record is in the area pointed to by
the parameter buffer. The record length is specified by the parameter length. If the return value is non-
negative, then the operation was successful. If the return value is negative, then a DB/C DX runtime I/O
error occurred.

Page 75

int niordrec(int handle, long recnum, unsigned char *buffer, int length);

Read a record by record number. The parameter handle specifies the file. The parameter recnum contains
the record number (zero is the first record). The record is moved to the area pointed to by the parameter
buffer. The record length is specified by the parameter length. If the return value is non-negative, then
the operation was successful and the return value is the length of the record that was moved to the buffer.
If the end of file is en countered, the return value is -2. Otherwise, if the return value is negative, then a
DB/C DX runtime I/O error occurred.

int niowtrec(int handle, long recnum, unsigned char *buffer, int length);

Write a record by record number. The parameter handle specifies the file. The parameter recnum contains
the record number (zero is the first record). The record is in the area pointed to by the parameter buffer.
The record length is specified by the parameter length. If the return value is non-negative, then the
operation was successful. If the return value is negative, then a DB/C DX runtime I/O error occurred.

int niordkey(int handle, unsigned char *key, unsigned char *buffer,
 int length);

Read a record by key. The parameter handle specifies the file. The parameter key points to a zero
terminated string that specifies the lookup key. The record is moved to the area pointed to by the
parameter buffer. The record length is specified by the parameter length. If the return value is non-
negative, then the operation was successful and the return value is the length of the record that was
moved to the buffer. If the key could not be found, the return value is -2. Otherwise, if the return value is
negative, then a DB/C DX runtime I/O error occurred.

int niordks(int handle, unsigned char *buffer, int length);

Read the record associated with the next key. The parameter handle specifies the file. The record is
moved to the area pointed to by the parameter buffer. The record length is specified by the parameter
length. If the return value is non-negative, then the operation was successful and the return value is the
length of the record that was moved to the buffer. If the end of file is encountered, the return value is -2.
Otherwise, if the return value is negative, then a DB/C DX runtime I/O error occurred.

int niordkp(int handle, unsigned char *buffer, int length);

Read the record associated with the previous key. The parameter handle specifies the file. The record is
moved to the area pointed to by the parameter buffer. The record length is specified by the parameter
length. If the return value is non-negative, then the operation was successful and the return value is the
length of the record that was moved to the buffer. If the beginning of file is encountered, the return value
is -2. Otherwise, if the return value is negative, then a DB/C DX runtime I/O error occurred.

int niowtkey(int handle, unsigned char *buffer, int length);

Write the record and key. The parameter handle specifies the file. The record is in the area pointed to by
the parameter buffer. The record length is specified by the parameter length. If the return value is non-
negative, then the operation was successful. If the key is a duplicate and duplicates are not allowed, the
return value is -2. Otherwise, if the return value is negative, then a DB/C DX runtime I/O error occurred.

int nioupd(int handle, unsigned char *buffer, int length);

Update the current record. The parameter handle specifies the file. The record is in the area pointed to by
the parameter buffer. The record length is specified by the parameter length. If the return value is non-
negative, then the operation was successful. If the return value is negative, then a DB/C DX runtime I/O
error occurred.

Page 76

int niodel(int handle, unsigned char *key);

Delete a record and key. The parameter handle specifies the file. The parameter key points to a zero
delimited string that is the key of the record to be deleted. If the return value is non-negative, then the
operation was successful. If the key was not found, the return value is -2. Otherwise, if the return value is
negative, then a DB/C DX runtime I/O error occurred. Depending on the system, all other keys
associated with this record may or may not be deleted by this routine.

int niolck(int *handle);

Lock one or more files. This function is called when a filepi statement is executed for one or more native
files. The parameter handle is the pointer to an array of file handles. The last array element will be zero. If
the return value is zero, then the operation was successful. If the return value is negative, then a DB/C
DX runtime I/O error occurred.

int nioulck(void);

Release the locks issued by niolck. This function is called when a filepi 0 statement is executed or when a
filepi expires. If the return value is zero, then the operation was successful. If the return value is negative,
then a DB/C DX runtime I/O error occurred.

int nioclru(void);

Close the least recently used file. This function is called by the DB/C DX runtime or the nio routines
when there are no more available handles for the process or from the operating system. If the return value
is zero, then the operation was successful and a file was closed. If the return value is -1, then the operation
was unable to close a file.

int nioerror(void);

Return the error that is specific to the operating system. This function may be called after another nio
function returns an error code.

Writing Device Support Routines
The device variable declaration defines a device. open, close, query, change, load, store, link, and unlink
are operations that are allowed to act on a device variable. This section describes how to write the
functions to support these operations.
The dxreadme.txt file distributed with DB/C DX contains information describing how to compile and
link a ccall function with the DB/C DX runtime. The device support routines module is incorporated
with the DB/C DX runtime in the same manner. The compiled functions are contained in a module
named dsr.obj or dsr.o, depending on the operating system.
All functions described in the following paragraphs must be provided in the dsr module. All the
functions may call the abnormal termination function named dbcdeath.

int dsropen(char *name);

Open a device. The parameter name points to a zero delimited string that contains the name of the device
specified in the open statement. A return value of -1 indicates that the device was not found. A return
value of -2 indicates that a system error was encountered. If the return value is negative, then a DB/C DX
runtime I/O error occurred. If the return value is non-negative, then the open was successful and the
return value is the handle to be used for further access.

int dsrclose(int handle);

Close the device specified by handle. If dsrclose is successful, it returns true, otherwise it returns false. If
false is returned, an I/O error occurs.

Page 77

int dsrquery(int handle, char *function, char *buffer, int *length);

Perform the query operation. The parameter handle specifies the device. The parameter function is a
pointer to a zero terminated string that is the logical string of the second operand in the query operation.
The parameter buffer is a pointer to an area that contains the information from the list of variables in the
query operation. length is a pointer to the size of buffer. The dsrquery function may change the contents
or size of the buffer area. Those changes will be reflected in the variables in the list. If dsrquery is
successful, it returns true. If it is unsuccessful, it returns false and an I/O error occurs.

int dsrchange(int handle, char *function, char *buffer, int length);

Perform the change operation. The parameter handle specifies the device. The parameter function is a
pointer to a zero terminated string that is the logical string of the second operand in the change operation.
The parameter buffer is a pointer to an area that contains the information from the list of variables in the
change operation, query operand. length is the size of the buffer. If dsrchange is successful, it returns
true. If it is unsuccessful, it returns false and an I/O error occurs.

int dsrload(int handle, struct imgvar **imagevar);

Load an image from a device. The parameter handle specifies the device. The parameter imagevar points
to a pointer to a structure that describes information associated with the image variable specified in the
load statement. If dsrload is successful, it returns true. If it is unsuccessful, it returns false and an I/O
error occurs.

int dsrstore(int handle, struct imgvar **imagevar);

Store an image onto a device. The parameter handle specifies the device. The parameter imagevar points
to a pointer to a structure that is the same as for dsrload. If dsrstore is successful, it returns true. If it is
unsuccessful, it returns false and an I/O error occurs.

int dsrlink(int handle, struct queue ** qhandle);

Link a device with a queue. The parameter handle specifies the device. The parameter qhandle specifies
the queue. If dsrlink is successful, it returns true. If it is unsuccessful, it returns false and an I/O error
occurs.

int dsrunlink(int handle, struct queue ** qhandle);

Unlink a device from a queue. The parameter handle specifies the device. The parameter qhandle
specifies the queue. If dsrunlink is successful, it returns true. If it is unsuccessful, it returns false and an
I/O error occurs.
The dsr routines may use these three queue handling functions:

int queget(struct queue ** qhandle, char *message, int length);

Obtain a message from a queue. The parameter qhandle specifies the queue. The parameter message
points to the area to which the message is moved. The parameter length is an integer that contains the
size of the area pointed to by message. If no message is available, queget returns zero. If a message is
moved, queget returns the length of the message. If an error occurs, -1 is returned.

int queput(struct queue ** qhandle, char *message, int length);

Place a message into a queue. The parameter qhandle specifies the queue. The parameter message points
to the area that contains the message. length is the length of that message. If queput is successful, it
returns zero. Otherwise it returns non-zero.

Page 78

int quewait(struct queue ** qhandle);

Wait for a message to become available in a queue. qhandle specifies the queue. quewait returns true if
successful. Otherwise, it returns false.

Page 79

File Formats

Standard Text Files
Standard text files (also known as DB/C type files) are portable files. They consist of control characters
and the 95 ASCII printable characters. Standard text files are the default type of data file created by DB/C
DX utilities and the DB/C DX runtime.
Each record is from 0 to 65500 characters long.
The end of the record is indicated by one byte with value 0xFA. Deleted records are replaced by bytes
with value 0xFF, including the end of record character. The end of the file is indicated by one byte with
value 0xFB.
The characters that make up a record consist of the 95 printable ASCII characters plus compression bytes
with values 0x80 through 0xF9. The values 0x80 through 0xF8 correspond with a two character to one
byte compression scheme, as shown in this table:

0x80 is "00"
0x81 is "01"
0x82 is "02"
0x83 is "03"
0x84 is "04"
0x85 is "05"
0x86 is "06"
0x87 is "07"
0x88 is "08"
0x89 is "09"
0x8A is "0."
0x8B is "10"
0x8C is "11"
0x8D is "12"
0x8E is "13"
0x8F is "14"
0x90 is "15"
0x91 is "16"
0x92 is "17"
0x93 is "18"
0x94 is "19"
0x95 is "1."
0x96 is "20"
0x97 is "21"
0x98 is "22"

0x99 is "23"
0x9A is "24"
0x9B is "25"
0x9C is "26"
0x9D is "27"
0x9E is "28"
0x9F is "29"
0xA0 is "2."
0xA1 is "30"
0xA2 is "31"
0xA3 is "32"
0xA4 is "33"
0xA5 is "34"
0xA6 is "35"
0xA7 is "36"
0xA8 is "37"
0xA9 is "38"
0xAA is "39"
0xAB is "3."
0xAC is "40"
0xAD is "41"
0xAE is "42"
0xAF is "43"
0xB0 is "44"
0xB1 is "45"

0xB2 is "46"
0xB3 is "47"
0xB4 is "48"
0xB5 is "49"
0xB6 is "4."
0xB7 is "50"
0xB8 is "51"
0xB9 is "52"
0xBA is "53"
0xBB is "54"
0xBC is "55"
0xBD is "56"
0xBE is "57"
0xBF is "58"
0xC0 is "59"
0xC1 is "5."
0xC2 is "60"
0xC3 is "61"
0xC4 is "62"
0xC5 is "63"
0xC6 is "64"
0xC7 is "65"
0xC8 is "66"
0xC9 is "67"
0xCA is "68"

0xCB is "69"
0xCC is "6."
0xCD is "70"
0xCE is "71"
0xCF is "72"
0xD0 is "73"
0xD1 is "74"
0xD2 is "75"
0xD3 is "76"
0xD4 is "77"
0xD5 is "78"
0xD6 is "79"
0xD7 is "7."
0xD8 is "80"
0xD9 is "81"
0xDA is "82"
0xDB is "83"
0xDC is "84"
0xDD is "85"
0xDE is "86"
0xDF is "87"
0xE0 is "88"
0xE1 is "89"
0xE2 is "8."
0xE3 is "90"

0xE4 is "91"
0xE5 is "92"
0xE6 is "93"
0xE7 is "94"
0xE8 is "95"
0xE9 is "96"
0xEA is "97"
0xEB is "98"
0xEC is "99"
0xED is "9."
0xEE is ".0"
0xEF is ".1"
0xF0 is ".2"
0xF1 is ".3"
0xF2 is ".4"
0xF3 is ".5"
0xF4 is ".6"
0xF5 is ".7"
0xF6 is ".8"
0xF7 is ".9"
0xF8 is ".."

The byte value 0xF9 is a blank compression leader character. The one byte following it is the number of
blank characters that are represented by these two bytes. The allowable values for the byte following the
0xF9 are 3 through 248.

Page 80

Data Text Files
Data text files are portable ASCII type text files. Data text files are created with the -d option on the
utilities and records. Each record is 0 to 65500 characters long. The characters in a record are the 95
printable ASCII characters. The end of the record is indicated by one byte with value 0x0A (ASCII LF).
Deleted records are replaced by bytes with value 0x7F (ASCII DEL), including the end of record character.
The length of the file indicates the end of file, thus there is no end of file byte.

Native Text Files
Native text files are non-portable type text files that are correct for the operating system on which they are
created. Native text files are created with the -t option on the utilities and with the text keyword on file,
ifile and afile statements in DB/C programs. The maximum size of a native text file record is 65500
characters.

Index Files
Index files consist of a header block, branch blocks, leaf blocks, delete blocks and record reclamation
blocks. The default index block size is 1024. Valid index block sizes are 512, 1024, 2048, 4096, 8192, and
16384.
In the following tables, HHMMLL means a six byte binary field with the high order byte at the lowest file
offset and the low order byte at the highest file offset. The high order bit of the high order byte of an
HHMMLL field is always 0.
All character encoding is ASCII.
The header block is located at the beginning of the index file. The format of the header block is:

continued on next page

Offset Length Description

0 1 "L"

1 6 index file offset of first block in linked list of deleted index file blocks or 0 if
none (HHMMLL)

7 6 index file offset of first block in linked list of space reclamation blocks or 0 if
none (HHMMLL)

13 6 index file offset of top branch or leaf block in index tree or 0 if no records in
index (HHMMLL)

19 6 index file offset of highest used block (HHMMLL)

25 16 blanks

41 5 index block size (ASCII digits blank filled on left)

46 8 blanks

54 1 "L" if index is using leading character compression

55 1 "T" if -t is specified on index command line, blank if -t is not specified

56 1 "D" if -d is specified on index command line, blank if -d is not specified

57 1 "S" if space reclamation is supported, blank if not supported

58 2 key size. If less than 10 then blank followed by one ASCII digit value 1-9. Else if
less than 100 then two ASCII digits. Else if less than 255 then first character is A
through P and second character is ASCII digit 0-9.

60 4 blanks

Page 81

The format of a branch block is:

The format of a leaf block is:

Offset Length Description

64 5 record length if space reclamation supported (ASCII digits blank filled on left)

69 30 blanks

98 2 "10" index file version number

100 1 0xFA

101 variable text file name

next 1 0xFA

next variable command line parameters, each separated with one byte value 0xFA and
terminated with two consecutive 0xFA bytes

next variable zero or more bytes of 0xFF through end of block

Offset Length Description

0 1 "U"

1 6 index file offset of lower level branch or leaf block that contains keys less than
next key in this branch block (HHMMLL)

7 klen key value of a text file record (klen is key length)

klen + 7 6 text file offset of record associated with previous key (HHMMLL)

klen + 13 6 index file offset of lower level branch or leaf block that contains keys greater
than previous key and less than next key (HHMMLL)

note: the previous three fields may be repeated as many times as will fit into one
block

next variable zero or more bytes of 0xFF through end of block

Offset Length Description

0 1 "V"

1 klen key value of a text file record (klen is key length)

klen + 1 6 text file offset of record associated with previous key (HHMMLL)

note: the following three fields are may not exist or may be repeated as many
times as will fit into one block

next 1 one byte binary value (n) is the number of characters omitted from the left side
of the key value in following field because they duplicate characters from the
left side of the previous key in this leaf block

next klen - n rightmost characters of key value of text file record that are different from
previous key in this leaf block

next 6 text file offset of record associated with previous key (HHMMLL)

next variable zero or more bytes of 0xFF through end of block

Page 82

The format of a deleted block is:

The format of the space reclamation block is:

AIM Index Files
Associate index method index files consist of a header block and one or more extent blocks. The header
block size is 1024.
In the following table, HHMMLL means a six byte binary field with the high order byte at the lowest file
offset and the low order byte at the highest file offset. The high order bit of the high order byte of an
HHMMLL field is always zero.
All character encoding is ASCII.
The header block is located at the beginning of the AIM index file. The format of the header block is:

Offset Length Description

0 1 "D"

1 6 index file offset of next deleted block (HHMMLL)

7 variable multiple bytes of 0xFF through end of block

Offset Length Description

0 1 "R"

1 6 file offset of deleted record (HHMMLL)

next variable multiple bytes of 0xFF through end of block

Offset Length Description

0 1 "A"

1 6 AIM index file offset of the next extent or 0 if none (HHMMLL)

7 6 the record number + 1 of a record that has been deleted and is found in this
extent or 0 if none (HHMMLL)

13 6 the number of records in each slot in this extent (HHMMLL)

19 13 blanks

32 5 number of slots (Z value) (ASCII digits blank filled on left)

36 4 blanks

41 5 data file record length (ASCII digits blank filled on left)

46 11 blanks

57 1 "Y" if upper and lower case are distinct, "N" if not distinct

58 1 match character

59 1 "V" if variable length records in text file if variable length records in text
file,"F" if fixed length records in text file, "S" if fixed length records and space
reclamation

Page 83

For AIM files, the rest of file consists of one or more extents. The first extent (or primary extent) always
exists. Each extent begins with a preface. The primary extent preface is just the 1024-byte header block.
Secondary extents begin with a preface of 28 bytes. Their format is the same as the first 28 bytes of the
AIM header block. After the preface, each extent contains information broken into slots. There are (Z
value) slots in each extent. The first slot begins at file offset 1024 for the primary extent and at the first
byte after the 28-byte preface in secondary extents. The number of records in each extent is always evenly
divisible by eight. Each slot consists of (N / 8) bytes where N is the number of records in this extent. Each
bit in the slot corresponds to a record. If a record contains a pattern that maps to this slot number, then
the bit for that record will be on; otherwise it will be off. For variable length records, the record number is
((FPOS - 1) / 256) where FPOS is the file position of the first byte of the record.
The AIM pattern coding mechanism uses a hashing algorithm. The five coding patterns are:

Leftmost character (L1) <left byte fn>, 31, <left byte>
Two leftmost characters (L2) <two left bytes fn>, <left byte>, <left + one byte>
Rightmost character (R1) <right byte fn>, 30, <right byte>
Two rightmost characters (R2) <two right bytes fn>, <right byte>, <right + one byte>
Three characters (F) <three byte float> <byte 1>, <byte 2>, <byte 3>

fn stands for field number. It is the key field number (first one is zero). Each of the three bytes is anded
with hex 1F (same as modulo 32). The resulting five bits from each byte are appended to create an
unsigned 15-bit number. The decimal range of a 15-bit number is 0 to 32767. This number is then taken
modulo the Z value (number of slots), to arrive at the slot number to which the coding pattern hashes.
The actual AIM lookup method will check the actual record to see if the desired lookup key actually exists
in the record. For each key field specified in the aimdex command that is not an excluded field, the
following patterns are used:

key field length 1 L1
key field length 2 L1, R1
key field length 3 L1, R1, L2, R2
key field length > 3 L1, R1, L2, R2 and zero or more F

Float fields are only hashed into a slot for each group of three adjacent non-blank characters.

60 6 number of records allocated to allocate in each secondary extent (HHMMLL)

65 34 blanks

98 2 "10" AIM index file version number

100 1 0xFA

101 variable text file name

next 1 0xFA

next variable variable command line parameters, each separated with one byte value 0xFA
and terminated with two consecutive 0xFA bytes

next variable zero or more bytes of 0xFF through end of block

Page 84

DB/C Programming Language General Information

Statement Structure
All statements follow this general format:
label operation operands comments
label is a string of characters. A label may contain an upper-case character (A-Z), a lower-case

character (a-z), a dollar sign ($), a digit (0-9), a period (.), an underscore (_), or an “at” sign
(@). The first character in the string must be an upper-case character, a lower-case character,
or a dollar sign. The maximum length is 31 characters.
The label is optional in some statements. If the first character of a program line is a blank or a
tab, the line does not contain a label. If a label exists, one or more blank or tab characters
must separate the label and the operation.
There are two types of labels: the data label and the execution label. A data label may have
the same name as an execution label. However, a data label cannot have the same name as
another data label, and an execution label cannot have the same name as another execution
label.

operation (also called the verb), is a string of characters. An operation may contain an upper-case
character (A-Z), a lower-case character (a-z), a dollar sign ($), a digit (0-9), a period (.), an
underscore (_), or an “at” sign (@). The first character in the string must be an upper-case
character or a lowercase character. The maximum length is 31 characters. No distinction is
made between lower-case and upper-case characters.
One or more blank or tab characters separate the operation from the operand.

operands may be required by the operation. See the description of each operation for the format of its
operands.
Operands may be labels, literals, constants, variables, or * control directives. (These terms are
defined later in this chapter.)
Operands are separated by commas, semicolons, colons, and prepositions. The valid
prepositions are: by, to, of, from, using, with, in, and into. The separators used with
particular operands are defined in the section describing the operation. Some operations
require a list of operands. A comma separates each operand in a list. If a colon is placed after
the last operand of the current line, the list continues on the next line. The continuation line
must start with one or more blank or tab characters.

comments may follow the operands. One or more blank or tab characters separate the comments from
the operands.
Some operations allow optional operands. With these operations, it can be ambiguous
whether certain text is intended to be an operand or a comment. To eliminate this ambiguity,
a period can be used as a comment delimiter. The period is used to indicate the start of a
comment. The remainder of the line is considered to be a comment.
The maximum line length is 255 characters.

Comment Lines
A line that has + or * or . as the first character is a comment statement and is ignored by the compiler.
The compiler also ignores a completely blank line.
A comment line may appear anywhere in a program.
A comment line may be embedded between two lines that constitute one statement that are logically
connected by means of a colon.

Page 85

Standard Character Set
The standard character set for DB/C is:

blank
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789
!"#$%&'()*+,-./:;<=>?[]^_@{\|}~

The current implementation of DB/C DX is in ASCII, but DB/C DX is designed to work with other
character encoding sequences and different standard character sets.

Character Literals
A character literal is a string of characters from the standard character set that begins and ends with
quotation marks ("). The maximum length of a literal is 253 characters.
There are two ways to include a quotation mark character in a literal. The first way is to specify two
consecutive quotation marks (""). The second way is to use the pound sign (#) forcing character. The
character immediately to the right of the pound sign is included in the literal character string, regardless
of what it is. The forcing character itself is removed from the literal. For example, to include the pound
sign character in a literal, use the sequence ##.
A special case of the literal string is the one-character literal used by the equate, cmove, cmatch, and trap
statements. The forcing character is not used in the one-character literal used in these operations.

Numeric Literals
A numeric literal consists of a valid DB/C number. A DB/C number begins with zero or more blanks,
optionally followed by a minus sign, followed by zero or more digits, optionally followed by a decimal
point. If a decimal point is included, it must be followed by one or more digits. At least one digit must be
in the string. No other characters are allowed in the string. In a valid DB/C number, the total number of
digits cannot exceed 30.

Constants
In this manual, the word "constants" refers to numeric literals, character literals, numeric constants,
integer constants, hexadecimal constants, or octal constants.
A numeric constant is a string of digits, with or without a decimal point, that makes up a number. In
certain cases, zero and negative values are also allowed.
An integer constant is a string of one or more digits that makes up an integral value. In certain cases, zero
and negative values are also allowed. A decimal point is not allowed.
A hexadecimal constant is a string of digits and letters that represents a one-byte hexadecimal value. A
hexadecimal constant starts with 0X or 0x and contains digits and the letters A-F or a-f.
An octal constant is a string of digits from 0-7 that starts with a 0.

Character and Numeric Variables
A character variable contains a string of one or more characters. There are two numeric indexes associated
with each character variable: the form pointer and the length pointer. The value of the form pointer is
always less than or equal to the value of the length pointer. The value of the length pointer is always less
than or equal to the maximum size of the variable.
The logical string of a character variable is those characters from the form pointer to the length pointer,
inclusive. If the form pointer is zero, the logical string is null, regardless of the value of the length pointer.
The logical length of a character variable is the number of characters in the logical string.
There are three types of numeric variables: decimal, integer, and float.
A decimal numeric variable contains up to 30 digits plus a decimal point. The internal representation is
decimal characters, so all calculations are exact except division which is exact to a power of ten.

Page 86

An integer numeric variable contains positive and negative integral values. The internal representation is
a signed 32 bit 2's complement value, so the minimum value is -2147483648 and the maximum value is
2147483647.
A float numeric variable contains floating point values. The internal representation is an eight-byte float
value appropriate for the hardware.

The NULL Value
Character and numeric variables may contain a special value called the NULL value. The logical string of
a variable that has the NULL value is a zero length string. The setnull statement sets the value of a
variable to NULL. When a variable is the destination of any statement or operation except the setnull
statement, its value is set to "not NULL."

Flags
There are four flags used in DB/C programs: eos, equal, less, and over. eos stands for end-of-string. equal
is syntactically equivalent to zero. over stands for overflow.
Flags have two states: set (or true) and clear (or false). Most operations affect one or more flags. Some
operations are affected by the state of one or more flags.
The pseudo-flag greater is used by some operations. It is considered to be set if both equal and less are
clear. Otherwise, it is considered to be clear.

Expressions and Operators
An expression is a series of variables, constants, parentheses, and operators. Expressions may be used in
place of constants in most operations. Logical expressions are used in if, while, and until statements.
Expressions must always be enclosed in parentheses. For example:
 compare ((j + 1) * k) to num1

If a colon is found in an expression, the expression continues on the next line.
The keywords eos, equal, less, over, and greater are treated as flags in expressions only if they are not
defined else where as variables. For evaluation of the expression, the value of a flag is treated as an
integer variable with the value 0 if the flag is cleared and with the value 1 if the flag is set.
Expressions evaluate to either a numeric value or to a character value. During evaluation of a character
value, intermediate results and the final result are limited to a maximum of 256 characters. If truncation
occurs during the evaluation of a character expression, then an E566 error occurs.
The flags are not affected by the evaluation of an expression.
There are two types of operators: unary and binary. Unary operators precede their operand. Binary
operators are placed between their operands. Operands may be numeric or character variables or
constants.

Unary Operators
+ and - are the unary positive and negative operators. Their operand must be numeric. + has no effect.
- has the same effect as multiplying the operand by negative one. The resulting value is the same
numeric type as the operand. If the result would be truncated, the size of the result is one greater than the
operand (the left-size is increased to accommodate the minus sign). Otherwise the size of the result is the
same as the size of the source.
int, form, and float are the integer, form, and float coercion operators. The resulting value is the specified
numeric type. If the operand is a character variable or literal that does not contain a valid number, the
resulting value is zero.
char is the character type coercion operator. The operand must be a numeric. The resulting value is a
character string.

Page 87

isnull is the NULL value test operator. The operand may be a numeric or a character variable. The result
is a numeric value. If the operand has the NULL value, the result is one; otherwise, the result is zero.
sin, cos, tan, arcsin, arccos, arctan, exp, log, log10, abs, and sqrt are the sine, cosine, tangent, arcsine,
arccosine, arctangent, exponential, natural logarithm, base 10 logarithm, absolute value, and square root
operators, respectively. The operand must be numeric. The resulting value is float numeric type. The size
is the same as the operand.
not is the logical negation operator. The operand must be numeric. not returns an integer value equal to
zero if the value of the operand is non-zero. The result is one if the value of the operand is zero; otherwise
the result is zero. The result is integer numeric type and the size is one.
length is the maximum length operator. The result is the length of the variable. The length of a numeric
variable may be changed by the nformat statement. The length of a character variable is its maximum
length, which may be changed by the sformat statement. The result is integer numeric type. If the
operand is numeric, the size of the result is two. If the operand is character, the size of the result is 5.
size is the logical size operator. If the operand is numeric, the result of the size operator is a fractional
value that is the left-side.right-side format of the numeric operand. The numeric type is decimal and the
size is 2.1. If the right-side value would be greater than nine (because the operand has more than nine
digits after the decimal point), then left-side.9 is the result of the size operator. If the operand is character,
the result is an integer that is the logical length of the operand. If the form pointer of the character
variable is zero, the logical length is zero. Otherwise, the logical length is equal to the length pointer
minus the form pointer plus one. The result is integer numeric type and the size is 5.
fchar and lchar are the form pointed (or first) character and length pointed (or last) character operators.
The operand must be a character variable. If the form pointer is not zero, the result is a character string of
length one containing the specified character. Otherwise, the result is a character string of zero length.
squeeze, chop and trim are the squeeze, chop and trim operators. The operand must be a character
variable. The result of the squeeze operation is a character string that contains all the non-blank
characters from the operand. The result of the chop operation is a character string that contains all the
characters in the operand except trailing blanks. The result of the trim operation is a character string that
contains all the characters in the operand except the leading and trailing blanks.
formptr and lengthptr are the form pointer value and length pointer value operators. The operand must
be a character variable. The result is an integer value that is the form pointer or the length pointer of the
character variable. The result is integer numeric type and the size is 5.

Binary Operators
+, -, *, /, %, and ** are the add, subtract, multiply, divide, modulus, and power operators. Their
operands are numeric. For the power operation, both operands are converted to float and the result is
float. For the other operations, if the operands are the same type, then the result is that type. If the
operands are different numeric types and one operand is float, then the other is converted to float before
the operation takes place, and the result is float. If one operand is integer type and the other is decimal
type, then the integer is converted to decimal before the operation takes place, and the resulting value is
decimal numeric type. In the following, L is the number of digits to the left of the decimal point in the
result, R is the number of digits to the right of the decimal point, and L1, R1, L2 and R2 are the
corresponding number of digits from the first and second operands.
For addition and subtraction:

L = greater of (L1, L2) + 2
R = greater of (R1, R2)

For multiplication and power:
L = L1 + L2
R = R1 + R2

For division:
L = R1 + R2
R = greater of (R1, R2)

Page 88

For modulus:
L = greater of (L1, L2)
R = 0

If the result is decimal or float numeric typeand R is zero, there is no decimal point in the result. For
division, any extra digits on the right side of the result are truncated and no rounding occurs.
+ is the concatenation operator if both operands are character variables or literals. The result is a string
that is the concatenation of the operands. The logical string of each operand are the strings that are
concatenated.
=, <>, <, >, <= , and >= are the equal, not equal, less than, greater than, less than or equal, and greater
than or equal operators, respectively. Note that != may be used as an alternate form of the "not equal"
operator. The operands must be either both numeric or both character. If the operands are character, their
logical strings are compared. Different length strings are unequal. If the comparison is true, then the
result is one. If the comparison is false, then the result is zero. The result is integer numeric type and the
size is one.
and, &, or, and | are the logical and and or operators. and is equivalent to &. or is equivalent to |. Their
operands are numeric. If one or both operands are exactly zero, then the result of the and operation is
zero; otherwise the result is one. If both operands are exactly zero, then the result of the or operation is
zero; otherwise the result is one. The result is integer numeric type and the size is one.
! is the reset size operator. The syntax of this operation is:

varexp ! numvarexp
where varexp is a variable or expression and numvarexp is a numeric variable or numeric expression. The
value of numvarexp defines the new size of the result of the reset size operation. If the left operand is
numeric, then the result is decimal numeric type and the right operand defines the format. If the value of
the right operand is fractional, the fractional amount is the number of digits to the right of the decimal
point in the result. If the value of the right operand is non-fractional, then there is no decimal point in the
result. The size is the left side of the result is the integer value of the right side. If the left operand is
character, then the result is a character string. The logical string of the left side is either truncated on the
right, or blanks are appended to create a string that is the length specified by the value of the right
operand. Any fractional value is ignored.

Operator Precedence
When the precedence of operators is the same, all operations (except power) are performed from left to
right. The power operation is performed from right to left. A listing of operator precedence is provided in
the following table, grouped in order from highest precedence to lowest precedence.

Operator Precedence
()

unary -, unary +, sin, cos, tan, arcsin, arccos, arctan, exp, log, log10, sqrt, abs, formptr,
lengthptr, size, length, int, form, float, char, fchar, lchar, squeeze, chop, trim, isnull
!

**

* / %

+ -

< > <= >= = != <>

not

and &

or |

Page 89

Rounding Numbers
Rounding may occur in certain statements such as the move statement. Rounding is the process of
adjusting the numeric result so that the result fits the destination. Rounding is performed when the result
contains more digits to the right of the decimal point than will fit into the destination.
If the number being rounded falls exactly between two possible results (there is no “nearest” number),
then the number is rounded to the number with the greater absolute value.

Data Manipulation Statements
The data manipulation statements alter the content of numeric, character, and address variables and may
also alter the equal, less, over, and eos flags.
The arithmetic statements (such as add, multiply, mod, and compare) typically set equal if the result of
the operation is zero. If the result of the operation is non-zero, equal is cleared.
The arithmetic statements typically set less if the result of an operation is negative. If the result of an
operation is zero or positive, less is cleared.
The arithmetic statements create an intermediate result and then move the intermediate result to the
destination variable. The over flag is set if the most significant digit or sign of the intermediate result will
not fit in the destination. When over is set, the values of the other flags are undefined. If the result of an
arithmetic statement is not truncated, then over is cleared.
The operands of the arithmetic statements may be array variables or simple (non-array) variables. If the
operands are simple variables, one arithmetic operation takes place.
If the first source operand is an array variable and the destination is a simple variable, then the arithmetic
operation occurs between all elements of the source array. This is usually meaningful only for the add
operation.
If the source and destination operands are arrays, then the arrays must be exactly the same size (both in
number of dimensions and in number of elements in each dimension). One operation takes place for each
element. equal is set only if the result of all operations is zero. less is set if any result is less than zero. over
is set if any result is truncated.
If the operands for the add, subtract, compare, multiply, divide, or mod operations are different types of
numeric variables, then they are converted as follows:

If one operand is float, then the other operand is converted to float before the operation takes
place.
If one operand is integer and the other is number (form), then the integer is converted to number
before the operation takes place.

Operations on character variables frequently use the logical string of the variable. If the form pointer is
non-zero, the logical string includes all characters between the character pointed to by the form pointer
and the character pointed to by the length pointer. The logical string is considered null if the form pointer
is zero.
The logical string of a numeric variable includes all characters in the variable and leading blanks.
The logical length of a variable is the length of the logical string.

Program Flow Control Statements
When a DB/C program is compiled, a .dbc file is created. Each .dbc file is called a module. A module is
considered to be the primary module if it is the first program executed (the default is the answer.dbc
module) or if it is a program that has been the object of a chain statement. A module is considered to be a
secondary module if it is loaded by the loadmod statement, the ploadmod statement, or the runtime pre-
load mechanism.
Each program execution label is local to the module into which it is compiled unless the label has been
specifically defined as an external (global) label. Local labels are unknown to other modules. External

Page 90

labels are recognized by other modules. A label definition is made external by the routine statement. A
label reference is made external by the external statement.
Program flow begins at the first statement of the primary module and can continue into secondary
modules by means of goto, branch, call, perform, or user-defined verbs that refer to external labels in
other modules. Execution of the chain statement by either the primary module or a secondary module
unloads all modules (except pre-loaded modules) and begins execution of a new primary module.
Each module contains data and program information. There is one data area for the primary module and
for preloaded secondary modules. Other secondary modules may be associated with multiple copies
(instances) of their data area. Only one of these data areas may be accessed at a time. The currently
accessed data area is called the current instance of the secondary module. A program creates, switches
between, and destroys instances of a secondary module with the loadmod and unload statements.
Access to variables is local to the current instance of a module with two exceptions. The first exception is
access to common variables in secondary modules. Access to these variables permits access to the data
area of the primary module. The second exception is address variables. Address variables may refer to
data in any instance of any module. This access across modules is initiated by the call statement with
parameters, by a user-defined verb with parameters, or by the getparm and loadparm statements.

Keyboard and Display Manipulation Statements
In a character mode environment, interactive input and output are accomplished with the keyin, display,
and beep statements. The keyin and display statements contain lists of operands that define the actions
that will take place with the key board and the terminal screen.
All printable characters are accepted from the keyboard except that some international characters are
optionally supported. In addition, the Enter key, the Interrupt key, the Cancel key, function keys F1
through F20, and the extended function keys (Up, Down, Left, Right, Insert, Delete, Home, End, Page Up,
Page Down, Tab, Back Tab, Backspace and Esc) are supported. All other keys pressed on the keyboard are
ignored. The implementation of some or all of the keys is terminal dependent.
Pressing the interrupt key causes the equivalent of a stop operation to occur immediately.
The default window size is 25 lines of 80 columns. The window size may be reset to any size smaller or
larger (up to the maximum size of the display screen).
The setendkey, clearendkey, and getendkey statements use numeric values to refer to specific keys.
Integer values 1 through 255 represent the ASCII characters of the character set in use. The numeric
values of the other ending keys are:

256 - 260 Enter, Esc, Backspace, Tab, Back Tab
261 - 270 Up, Down, Left, Right, Insert, Delete, Home, End, Page Up, Page Down
271 - 280 Shift+Up, Shift+Down, Shift+Left, Shift+Right, Shift+Insert, Shift+Delete,

Shift+Home, Shift+End, Shift+Page Up, Shift+Page Down
281 - 290 Ctrl+Up, Ctrl+Down, Ctrl+Left, Ctrl+Right, Ctrl+Insert, Ctrl+Delete,

Ctrl+Home, Ctrl+End, Ctrl+Page Up, Ctrl+Page Down
291 - 300 Alt+Up, Alt+Down, Alt+Left, Alt+Right, Alt+Insert, Alt+Delete, Alt+Home,

Alt+End, Alt+Page Up, Alt+Page Down
301 - 320 F1 through F20
321 - 341 Shift+F1 through Shift+F20
341 - 360 Ctrl+F1 through Ctrl+F20
361 - 380 Alt+F1 through Alt+F20
381 - 406 Alt+A through Alt+Z

In a graphical user environment, interactive input and output can be accomplished with keyin, display,
and beep in the same manner as in a character mode environment.

Printer Output Statements
Printer output operations direct data to a printer or a spool file. The maximum size of the print line is 400
characters for both printing and spooling to a print file.

Page 91

Disk Input and Output Statements
Disk input and output consist of statements that cause data to be read and written from disk files. All
data is read and written to the file with respect to logical records. The maximum record size is 65500
characters.
Five types of data files are supported by DB/C DX.
The first type of data file is the standard DB/C format file. Records consist of printable ASCII characters
plus space and digit compression characters. Records are terminated by the end-of-record mark which is
one character with the value hex FA. The end-of-file mark is one character with the value hex FB. Deleted
records are replaced with the delete character which is hex FF.
The second type of data file is the portable text file. Use of this type of file is specified by adding the data
operand to the file, ifile or afile variable definitions. Records are ASCII characters terminated with the LF
(linefeed) character. There is no end-of-file character. Deleted records are replaced with the ASCII DEL
character.
The third type of data file is the runtime operating system text file. Use of this type of file is specified by
adding the text operand to the file, ifile or afile variable definitions. Records consist of characters that are
valid text records for the runtime operating system. Depending on the operating system, different
methods are used to specify end-of record, end-of-file, and deleted records.
The fourth type of data file is the user-defined file type. Use of this type of file is specified by adding the
native operand to the file or ifile variable definitions.
The fifth type of data file is the binary file type. Use of this type of file is specified by adding the binary
operand to the file, ifile or afile variable definitions. Records consist of binary data chunks. The size of
these binary data chunks is determined by the variable= or fixed= operand. Typically the fixed= operand
is used with the binary file type, but if the file size is not an even multiple of the record length, the
variable= operand should be used. There is no end-of-record, end-of-file, or deleted record support.
The four access methods supported are: random, sequential, indexed sequential, and associative index.
The file is considered indexed if the ifile declaration statement is used. The file is considered aimdexed if
the afile declaration statement is used. The file is considered sequential if the variable= operand is
specified on the file declaration statement. The file can be accessed by either sequential or random access
when the fixed= operand is specified on the file declaration statement. In addition, an ifile and an afile
can be accessed in a random or sequential mode.
The concept of file position is applicable to all access methods. The file position is a number that
corresponds to a record within the file. In all cases it is the physical character position in the text file.
The position within the logical record for reads and writes is sequential left to right unless modified by
the tab control codes. When a tab control code is encountered in the list, the position within the logical
record is modified to the new tab position.

SQL Input and Output Statements
Access to Structured Query Language (SQL) databases is available with DB/C DX.
These three statements perform SQL operations: sqlexec, sqlcode, and sqlmsg.

Queue, Device, and Resource Variables
GUI programs use the queue, device and resource variables and operations extensively. In addition,
custom soft ware can be written to interface with the queue, device, and resource operations.

Operating System Command Execution
Operating system commands may be executed directly as DB/C statements. Refer to Miscellaneous File
Manipulation Statements for more information.

Page 92

Communications
Communications operations allow tasks in the same system or in different systems to send and receive
messages. Custom-written software may be installed to allow communications.

Syntax Abbreviations
Throughout the manual, these abbreviations are used:

adrvar address form of a variable
afile afile variable
array character or numeric array variable
cadrvar address form of a character variable
cfile comfile variable
charexp character variable, character literal, or character expression
charlit character literal string
charvar character variable
chrarray character array variable
class class definition label
dcon equate label or decimal constant
device device variable
equate equate label
exp character variable, numeric variable, character literal, numeric constant,

character expression, or numeric expression
expression character or numeric expression
file file variable
hexcon equate label or decimal, hexadecimal, or octal constant
ifile ifile variable
image image variable
label label
lblvar label variable
lstvar list variable
method label of a class routine
numarray numeric array variable
numexp numeric variable, numeric literal, or numeric expression
numlit numeric literal string
numvar numeric variable
objvar object variable
pfile pfile variable
prep preposition or comma
queue queue variable
resource resource variable
var character or numeric variable
variable any variable except a label variable
varvar typeless (var) address variable

Page 93

Compiler Directives

Compiler directives are a class of instructions which control the compilation process.
The compiler directives do not affect and are not affected by the flags.

Conditional Compiler Directives

label %if hexcon1 operator hexcon2
label %ifz list1
label %ifnz list1
label %ifdef equate
label %ifdef var
label %ifdef list2
label %ifndef equate
label %ifndef var
label %ifndef list2
label %iflabel list3
label %ifnlabel list3
label ifeq hexcon1, hexcon2
label ifne hexcon1, hexcon2
label ifgt hexcon1, hexcon2
label ifng hexcon1, hexcon2
label iflt hexcon1, hexcon2
label ifnl hexcon1, hexcon2
label ifge hexcon1, hexcon2
label ifle hexcon1, hexcon2
label %else
label %elseif hexcon1 operator hexcon2
label %endif
label xif

All conditional compiler directives that have % as the first character may also be used with #
 as the first character (in place of the %)
ifs and ifnz works like %ifnz, except they should only be used with xif.
ifc and ifz works like %ifz, except they should only be used with xif.
label is optional
hexcon1 is the first operand
hexcon2 is the second operand
operator is one of these: < > <= >= = <>
list1 is a list of hexcon operands
equate is an equate label
var is a data variable label
list2 is a list of equates and data variable labels
list3 is a list of program label names

The conditional compiler directives determine if the program lines within the scope of the construct will
be compiled.
The result of the evaluation of the operands of the %if.., if.. and %elseif statements determines the
conditional compilation. If the condition associated with one of these statements is satisfied, the program
lines within the scope of the directive are compiled. If the condition is not satisfied, the program lines
within the scope of the directive are not compiled.
If the preceding %if.. or if.. directive statement condition was not satisfied, the %elseif statement causes
the following program lines to be compiled if the condition of the %elseif statement is satisfied.
The %else statement reverses the current conditional compilation status. If an %else directive is
encountered and no previous condition has been satisfied, then the lines of code within the scope of the

Page 94

%else directive are compiled. If an %else directive is encountered and a previous condition has been
satisfied, then the lines of code within the scope of the %else directive are not compiled.
The %endif statement terminates the most recent conditional compilation directive action.
The xif statement ends the scope of all previous if conditional compilation statements that do not begin
with the % character. That is, xif does not apply to or affect the scope of %if, %ifdef, etc. It only applies to
the ifeq, ifne, etc. statements. This action is modified by the -8 and -9 compiler command line parameters.
The condition is satisfied as follows:

Directive Satisfied Condition
%if if the comparison operation (specified by the operator) on the first and second

operands is true
%ifz if any hexcon in the list is zero
%ifnz if any hexcon in the list is non-zero
%ifdef if any equate or variable in the list is previously defined in the program
%iflabel if any equate or variable in the list is not previously defined in the program
%ifnlabel if any program label in the list is not previously defined in the program
%elseif if the comparison operation (specified by the operator) on the first and second

operands is true
ifeq if the first operand is equal to the second operand
ifne if the first operand is not equal to the second operand
ifgt if the first operand is greater than the second operand
ifng if the first operand is not greater than the second operand
iflt if the first operand is less than the second operand
ifnl if the first operand is not less than the second operand
ifge if the first operand is greater than or equal to the second operand
ifle if the first operand is less than or equal to the second operand

Page 95

define

label define any-string
label define "any-string"

label is required
any-string is a series of characters

The define statement assigns a string of characters to a label. Whenever the label is encountered in the
source file in an operand position, it is replaced by the string of characters any-string. any-string may
include previously defined labels. Recursive expansion will result in an error.
Quotation marks (") must enclose any-string if any-string includes one or more blanks. To include a
quotation mark character in the string, use the pound sign (#) as a forcing character. Similarly, to include
a pound sign character in the string, use the pound sign forcing character.

Page 96

equate

label equate charlit
label equate hexcon

equ may be used in place of equate
label is required
charlit is a one-character literal string
hexcon is a constant or equate label that represents a number from 0 to 65500

The equate statement assigns an integer value to a label. Whenever the label is encountered in the
program, it is replaced by the integer value defined in the corresponding equate statement. In this way, an
equate label can be used in place of a decimal, octal, or hexadecimal constant.
If the operand field is a single-character literal, the decimal value of the character is assigned to the equate
label.

Page 97

include

label include filename
inc may be used in place of include
label is optional
filename is the name of a source file

The include statement inserts the contents of another file into the program. When the compiler
encounters an include statement, it replaces the statement with the contents of the specified source file.
Those contents are then compiled as if they actually existed in the source program.
If no extension is specified for filename, .txt is assumed.
Includes may be nested up to sixteen levels deep.
Certain compiler command line parameters may modify the include file name.

Page 98

liston, listoff

liston
listoff

The liston and listoff directives control whether the listing of the source program is displayed during the
compilation process.
The source program is only listed on screen when the -d option is specified on the compiler command
line and liston is in effect. liston is automatically in effect at the beginning of compilation. listoff prevents
the display of subsequent lines of code, while liston permits the display of subsequent lines of code.
The liston and listoff directives have no effect on the compilation process; they simply turn the listing
mechanism on and off.

Page 99

Definition Statements

There are several types of definition statements: variable definitions, class definitions, method definitions,
routine definitions and user-defined verb definitions.
Variables are defined by variable definition statements. Variable definition statements may be located at
any place in the program. The only restriction is that the variable definition statement for a variable must
precede any executable statement which references the variable. There is one exception to this general
rule. A parameter used in a routine or lroutine statement may be declared immediately after the routine
or lroutine statement.
Certain types of variables allow arrays of those variables to be defined. Arrays are defined with one, two,
or three dimensions. Each dimension may contain up to 32767 elements.

Page 100

Character Variables

label char dcon
label char dcon, initial value
label char dcon [array-spec]
label char dcon [array-spec], initial values
label init list

dim and character may be used in place of char
(array-spec) may be used in place of [array-spec]
label is the name of the variable
dcon is the maximum length of the variable
[array-spec] is one of [dcon], [dcon, dcon] or [dcon, dcon, dcon]
value is a literal value enclosed in double quotation marks
values is a comma delimited list of literal values enclosed in double quotation marks
list is a list of character literals and decimal, octal, and hexadecimal constants

A character variable definition statement defines a character variable.
A character variable contains a character string. A form pointer, a length pointer, and a maximum length
are associated with each character variable. The valid values of the form pointer, the length pointer, and
the maximum length are 0 through 65500. The value of the form pointer is always less than or equal to the
value of the length pointer. The value of the length pointer is always less than or equal to the maximum
length.
For the char statement, the dcon operand specifies the maximum length of the variable. If the initial value
syntax is not specified, the initial value of a char variable is blanks with the form pointer and length
pointer set to zero. If initial value is specified, the form pointer is set to one, the length pointer is set to the
number of characters in the value literal, and the value literal is placed in the variable followed by blanks.
The [array-spec] forms of the char statement define an array of character variables. The initial values
syntax form allows arrays to be initialized in the declaration statement. values is a comma delimited list of
literal values, each enclosed in quotation marks. Arrays are initialized in row-major order.
An init statement defines a character variable with an initial value made by appending the literals and
constants from the list. The total length (in characters) of the literals and constants in the list is the
maximum length of the variable. The form pointer is set to one. The length pointer is set to the maximum
length.
The list in an init statement may be continued to the next program line by means of a colon. A character
variable defined by an init statement may contain up to 8192 characters.

Page 101

Numeric Variables

label num dcon1
label num dcon1.dcon2
label num numlit
label num dcon1[array-spec], initial values
label num dcon1.dcon2[array-spec], initial values
label integer dcon1
label integer numlit
label integer dcon1[array-spec], initial values
label float dcon1
label float dcon1.dcon2
label float numlit
label float dcon1[array-spec], initial values
label float dcon1.dcon2[array-spec], initial values

number and form may be used in place of num
int may be used in place of integer
(array-spec) may be used in place of [array-spec]
label is the name of the variable
dcon1 is the number of digits left of the decimal point
dcon2 is the number of digits right of the decimal point
numlit is the initial value
[array-spec] is one of [dcon], [dcon, dcon] or [dcon, dcon, dcon]
values is a comma delimited list of numeric values

The numeric variable definition statements define numeric variables. dcon1 is optional in the dcon1.dcon2
forms of these statements. When dcon1 is not specified, it defaults to zero. When dcon2 is not specified, it
defaults to zero. When dcon2 is zero, there is no decimal point.
A numeric variable always contains a valid DB/C number string. The number is right justified and
leading zeros are suppressed.
The number statement defines a decimal numeric variable that contains an exact representation of a
number with the number of digits specified by dcon1 and dcon2.
The integer statement defines an integer numeric variable. The initial value of an integer variable is zero.
Whenever an integer variable is displayed, printed, or written to a file, it is first converted to a string of
digits with width specified by the dcon1 operand. If the width is too small to represent the number, the
result is undefined.
The float statement defines a float numeric variable. The initial value of a float variable is zero. Whenever
a float variable is displayed, printed, or written to a file, it is first converted to a string of digits (and a
decimal point if dcon2 is non-zero) with dcon1 digits left of the decimal point and dcon2 digits right of the
decimal point. If dcon1 is too small to contain the value, the result is undefined. If dcon2 is too small, the
number is truncated to fit.
The forms of the num, integer, and float statements that have a numlit operand define the size and initial
value of the numeric variable. The non-numlit forms all set the initial value of the variable to zero.
The [array-spec] forms of the numeric variable definition statements define arrays of numeric variables.
The initial values syntax is optional and allows arrays to be initialized in the declaration statement. values
is a comma delimited list of decimal constant values. Arrays are initialized in row-major order.

Page 102

List Variables

label list
label list with names
 listend
label varlist list

label is the list variable name
list is a list of character variables, numeric variables, literals, arrays, array elements, list variables,

file variables, and special variables
The list statement associates a group of data variables with a single label by defining a list variable. The
variables specified immediately after the list statement are included in the list variable. The listend
statement indicates the end of the list of variables. The list followed by listend statement pairs may be
nested.
The with names form of the list statement allows the getname statement to provide the names of the list
variable and of all the variables contained in the list. See the getname statement.
The varlist statement defines a list variable. The list of variables associated with varlist is a list of
previously defined variables that do not have to be contiguous.
list can contain variables of any type including file, ifile, afile, queue, record, etc. However, an attempt to
use a list as an operand in a statement that does not allow variables of the types included in the list will
result in an E 557 error. For example, the clear statement does not allow file type variables as operands.
Therefore, a list that contains a file cannot be cleared.

Page 103

Record Variables

label1 record
label1 record with names
label2 record definition
label1 record like label2
label1 record like label2 with names
 recordend

label1 is the name of the record being declared
label2 is the name of a record prototype definition

See also: List Variables, getname
The record statement defines a list variable. The record like forms of the record statement are not used in
conjunction with the recordend statement. The other record statements are followed by zero or more
variable definition statements which are then immediately followed by a recordend statement.
The forms of the record statement without the definition or like keywords create a list of variables as an
actual data item. The record and recordend pair of statements works exactly the same as a list and listend
statement pair, except the names of all variables contained within the record and recordend pair are
prefaced with label1 followed by a period. These forms of the record and recordend statement pair may be
contained within a list and listend statement pair and may contain a list and listend statement pair. Partial
overlap with a list and listend pair is not allowed.
The form of the record statement with the definition keyword is used to create a record prototype. The
variables specified immediately after the record definition statement are included in the record prototype
definition. The recordend statement indicates the end of the prototype definition. All variables contained
within the record definition followed by recordend scope are not actually created, but are used as models.
No actual data item of the name label2 exists. This form of the record and recordend statement pair may
not be contained within a list and listend statement pair, but may contain a list and listend statement pair.
Partial overlap with a list and listend statement pair is not allowed.
In all cases, record definition and recordend statement pair may not be nested.
The forms of the record statement with the like keyword are used for data definition by prototype. The
record like statement creates a record using the prototype (defined by a record definition statement)
whose label matches the label following the like operand. The record definition statement must precede
the record like statement in the source program. A record that is declared by the record like form is an
actual data item. Each variable in the record will have label1 followed by a period attached to the
beginning of its name. A recordend statement is not used in conjunction with a record like statement. A
record like statement may be located anywhere that a normal data definition statement may be located,
except not within another record and recordend statement pair.
The with names forms of the record statement allow the getname statement to provide the list variable
name (label1) and the name of all variables contained in the list. See the getname statement.

Page 104

File Variables

label file operand-list
label ifile operand-list
label afile operand-list
label pfile
label comfile

label is the file variable name
operand-list is a comma delimited list of operands

The file statement defines a random and sequential file variable. The file statement operand list may be
empty or may consist of one or more of the following operands:
fixed=dcon
fixed=numvar defines the file to consist of fixed length records. If dcon is specified, it is the record

length. If numvar is specified, its value is the record length at the time the file is
opened. The value of numvar is truncated if it is fractional. fixed may be abbreviated
to fix. The largest value allowed for dcon is 65500.

variable=dcon
variable=numvar defines the file to consist of variable length records. If dcon is specified, it is the

maximum record length. If numvar is specified, its value is the maximum record
length at the time the file is opened. The value of numvar is truncated if it is
fractional. variable may be abbreviated to var. If neither fixed nor variable is
specified, variable=256 is the default. The largest value allowed for dcon is 65500.

compressed defines the file to consist of space and number compressed records. compressed is
mutually exclusive with fixed, data, native, and binary. compressed may be
abbreviated to comp. If variable is specified or assumed, and compressed and
uncompressed are not specified, compressed is the default.

uncompressed defines the file to consist of records which are not compressed. uncompressed may
be abbreviated to uncomp. If fixed is specified, uncompressed is assumed.

standard defines the file as a standard DB/C-type file. If standard, text, native, and binary are
not specified, standard is the default. standard is mutually exclusive with text, data,
crlf, native, and binary.

text defines the file to be compatible with text files of the runtime operating system. text
is mutually exclusive with standard, data, crlf, native, and binary.

data defines the file to be an ASCII data file with LF (linefeed) as the end-of-record
character, and DEL as the deleted space character. There is no end-of-file character.
data is mutually exclusive with standard, text, crlf, native, and binary.

crlf defines the file to be an ASCII data file with CR (carriage return), LF (linefeed) as the
end-of-record marker. crlf is mutually exclusive with standard, text, data, native, and
binary.

native defines the file to be used with a certain file type unique to an operating system and
runtime. This option is only valid when used with a specially configured runtime.
native is mutually exclusive with standard, text, data, crlf, and binary.

binary allows access to binary data as fixed records. binary is mutually exclusive with
standard, text, data, crlf, and native.

static=dcon defines the size of the buffer used for sequential reads and writes from the file. dcon is
a number from 1 to 8. 1 denotes the smallest buffer and 8 denotes the largest buffer.
Buffering is only done for files opened in exclusive mode.

cobol enables a program to read and write files that are compatible with the COBOL
programming language. This affects the action of read and write on numeric
variables.

Page 105

When writing a numeric variable to a COBOL-type file, any space or minus sign is
written as the character 0 and the decimal point is not written. If the value of the field
is negative, the least significant digit of the variable is altered before it is written to
disk. The last character is altered to } if the far right digit was 0. The last character is
altered to a letter between J and R if the far right digit was 1 through 9, respectively.
When reading a numeric variable from a COBOL-type file, the character 0 is
converted to a blank character (or a minus sign if the 0 is in the most significant digit
position). The decimal point is implied by the receiving field. If the far right character
is }, it is changed to 0 and the value of the field is negative. If the far right character is
letter J through R, the value of the field is negative, and the last character is altered to
a digit between 1 and 9, respectively. If the far right character is {, it is changed to 0.
If the far right character is letter A through I, it is changed to a digit between 1 and 9,
respectively. If a number cannot fit into the variable, a format error occurs. This error
occurs when the number is negative and a character other than 0 is contained in the
most significant digit position.
Note that the records read and written with the cobol operand in effect are shorter
than the records read and written with the same variable list without the cobol
operand in effect. The number of bytes shorter is equal to the number of numeric
fields in the list that contain a decimal point. This shorter length must be reflected in
the fixed and variable operands.

dynamic is ignored.
overlap is ignored.
increment is ignored.
The ifile statement defines an indexed file variable. The operand list may include the same operands used
with the file statement. Additionally, the ifile operand list may contain one or both of these operands:
keylength=dcon
keylength=numvar defines the key length of the key associated with this file. The maximum key length

is 255. If the second form is used, numvar is a previously defined numeric variable.
Upon opening the file, the value in numvar defines the key length of the ifile. If
keylength is not specified, then the key length used is that specified by the index
utility when the index was created. keylength may be abbreviated to keylen.

duplicates indicates that duplicate keys will be allowed in the file. If neither duplicates nor
noduplicates is specified, then the original duplicate specification in the index file
controls whether or not duplicates are allowed. duplicates may be abbreviated to
dup. duplicates is mutually exclusive with noduplicates.

noduplicates indicates that duplicate keys will not be allowed in the file. noduplicates is mutually
exclusive with duplicates. noduplicates may be abbreviated to nodup.

The afile statement defines an associative index file variable. The operand list may include the same
operands used in the file statement.
The pfile statement defines a print file variable. A print file variable defines the destination of the print
image created by the print, splopen, and splclose statements.
The comfile statement defines a communications file variable.

Page 106

Classes, Object and Inherited Variables

label class definition, operand-list
label endclass
label class
label class module=charlit
label method
label object

The class statement with definition defines a class and is the first statement of the group of statements
that is the body of a class. The body of a class ends with the endclass statement. The class definition and
endclass statement pair can not be nested. There may be multiple class and endclass statement pair class
definition groups in a compile unit.
The operands of the class definition statement are optional. Each may be specified once. The operands
are:

make=routine-label
destroy=routine-label
parent=class-name

The operands are separated by commas. If no operands are specified, the preceding comma must be
omitted.
make and destroy identify the routines that are automatically called when an object is created or
destroyed. These routines must be defined by a routine statement inside of the class definition.
parent identifies the class that is the ancestor of this class. Methods and variables are inherited from the
parent and from all ancestors of the parent.
The class statements without definition define a class whose body is defined elsewhere. A class statement
without module defines a class whose definition and body are contained later in the same compile unit.
When module is present, the class definition and body are in another compile unit. The charlit value of
the module operand is the name of the compiled object file that contains the class definition of this class.
If a file extension is not specified in charlit, then .dbc is assumed. The charlit value may be up to 31
characters in length. Class statements without the definition keyword are not used in conjunction with
an endclass statement.
The method statement declares a method whose body is defined elsewhere. A method declared by a
method statement may be called by subsequent call statements. The body of the method (the routine or
lroutine statement that defines it) may be defined in this compile unit or in another compile unit. The
method statement must be used even if the method is defined in the same compile unit.
The object statement defines an object variable. An object variable is instantiated explicitly by the make
statement or implicitly by execution of a user-defined verb that has the !make or !transient operands in
its definition.
Inheritable variables are defined by preceding their operands with &. All types of variables except global,
common, label, record, list, and varlist type variables may be defined as inheritable variables. Inheritable
variables must be defined inside a class definition, but outside of any routines in that class.
Inherited variables are defined by preceding their operands with &&. Inherited variables need not contain
variable length, format, array size, and most other information. They only need to contain variable type,
array dimension information, and address variable designation information. Inherited variables must be
defined inside a class definition, but outside of any routines in that class. Inherited variables can only be
specified in classes that have a parent that contains inheritable variables with the same name and type.
Inherited variables are also inheritable.

Page 107

Special Variables

label device
label resource
label image operand-list
label queue operand-list

label is the variable name
operand-list is a list of operands

The device statement defines a device variable.
The resource statement defines a resource variable.
The image statement defines an image variable. The operand list contains the following operands:
h=dcon defines the horizontal size (in pixels) of the image stored in the image variable. This

operand is required.
v=dcon defines the vertical size (in pixels) of the image stored in the image variable. This

operand is required.
colorbits=dcon defines the number of bits contained in each pixel. This operand is optional. Valid

values are 1, 4, 8, 16, and 24. The default is runtime dependent.
The queue statement defines a queue variable. The operand list may be empty or may contain one or both
of the following operands:
entries=dcon defines the maximum number of entries contained in the queue variable. The default

is 32.
size=dcon defines the size (in characters) of each queue entry. The default is 32.

Page 108

Address Variables

label char @, initial value
label char [array-spec]@, initial values
label char @[], initial value
label char @[,], initial value
label char @[,,], initial value
label num @, initial value
label num [array-spec]@, initial values
label num @[], initial value
label num @[,], initial value
label num @[,,], initial value
label list @, initial value
label file @, initial value
label ifile @, initial value
label afile @, initial value
label comfile @, initial value
label pfile @, initial value
label object @, initial value
label device @, initial value
label resource @, initial value
label image @, initial value
label queue @, initial value
label var @, initial value
label var [array-spec]@

The initial value and initial values operands are optional. If not specified, the preceding
comma must be omitted.

character and dim may be used in place of char
number, form, integer, int, and float may be used in place of num
label is the variable name

The @ form of an address variable definition statement defines an address variable of the type specified
by the operation. With regard to address variables, all numeric types are considered to be the same.
The [array-spec]@ form defines an array of address variables. The @[], @[,], and @[,,] forms define
an address variable that points to a one, two, or three-dimensional array of the type specified by the
operation.
The var statement defines a special type of address variable called a typeless address variable. Typeless
address variables can only be used in moveadr, loadadr, storeadr, type, clearadr, movelv, movevl, and
testadr statements.
Address variables are assigned values by statements like moveadr and by the call statement with
parameters. When a statement makes reference to an address variable, the variable that is pointed to is
the variable on which the statement actually operates. If a reference is made to an address variable that
does not have a value assigned to it, a runtime error occurs.
Address variables are assigned initial values if initial is specified. The value operand is the name of a non-
address variable of the same type that is defined before the statement with the initial operand. values is a
comma delimited list of non-address variables of the same type. For typeless address variables, the label
in the value operand does not need to match in type.

Page 109

Global Variables

label gchar char-var-spec
label gnumber number-var-spec
label ginteger integer-var-spec
label gfloat float-var-spec
label gobject
label gdevice
label gresource
label gimage image-var-spec
label gqueue queue-var-spec
label gpfile

gnum and gform may be used in place of gnumber
gcharacter and gdim may be used in place of gchar
char-var-spec is char variable definition operands
number-var-spec is number variable definition operands
integer-var-spec is integer variable definition operands
float-var-spec is float variable definition operands
image-var-spec is image variable definition operands
queue-var-spec is queue variable definition operands

The global variable definition statements define global variables. A global variable persists across
program chaining. In all other respects a global variable is identical to a non-global variable. The global
variable type must match across program chaining, but the size is ignored if the global variable already
exists. Global arrays are allowed. Any initial value or values are ignored if the global variable already
exists.

Page 110

Common Variables

label char *operand
label init *operand
label num *operand
label integer *operand
label float *operand
label file *operand
label ifile *operand
label afile *operand
label comfile *
label pfile *

character and dim may be used in place of char
number and form may be used in place of num
int may be used in place of integer
operand is the size and optional [array-spec] operand as defined previously for each data definition

statement
When a program begins execution of another program, data items may be passed unmodified from the
first program to the second. Such data items, passed from one program to its successor, are called
common variables. A variable is defined as a common variable by a form of the data definition statement
which contains an asterisk (*) immediately preceding the operand or operands.
For common data items to be successfully passed from one program to the next, certain rules must be
observed. All common data must precede any non-common data. All common data items in the new
program must match all data items (common or non-common) in the primary program, in the same order.
To match, data items must be of the same type: character variables must be of the same declared length,
numeric variables must be of the same class and must have been declared with the same number of
integral and fractional digits, and arrays must have the same number of dimensions, be of the same size
in each dimension, and be of the same elemental type of the same size.
If the primary module has fewer variables (common and non-common) than the successor program has
common variables, the additional common data items are not treated as common.
If the common variable is encountered in the primary module when the program is being loaded (that is,
chained to from another program), then the value of the variable remains unchanged. If the common
variable is encountered in a secondary module (that is a module loaded by the loadmod statement), then
the common variable refers to a variable in the primary module.
Common variables may be used like regular variables, except they may not be used in varlist variables in
pre-loaded modules.

Page 111

Label Variables

label label @

See also: movelabel, movelv, movevl, loadlabel, storelabel, routine, lroutine, getparm, loadparm
The label statement defines a label variable. A label variable defines a program execution label that may
be changed at runtime. All program flow control statements that refer to an execution label may refer to a
label variable.

Page 112

verb, cverb

label verb proto-lis
label cverb proto-list

proto-list is a comma delimited list of operand prototypes
See also: call, ccall, class, destroy, getparm, loadparm, make, resetparm
The verb and cverb statements define user-defined verbs. A user-defined verb is a verb that may be used
like any regular executable verb, except the user-defined verb is implemented by user-provided DB/C or
C code.
When a user-defined verb is encountered in a source program, the compiler checks its syntax against the
syntax defined by the proto-list. If the syntax is incorrect, a compiler error is generated. If the syntax is
correct for a user defined verb defined by a non-object oriented verb statement, then the compiler
generates a call statement (possibly with parameters). If the syntax is correct for a user-defined verb
defined by a cverb statement, then the compiler generates a call to the cverb function.
When a user-defined verb is encountered in the source program with a :objvar appended to the user-
defined verb, then the user-defined verb is calling a method in the class from which the objvar was
created. If there is no method of that name in the appropriate class (or inherited class), then an E 551 error
occurs.
When a user-defined verb is executed that was defined with a class name (the second form of the verb
statement) causes an implicit make statement to execute before the call and an implicit destroy statement
to execute after the call statement. The implicit make, call and destroy all reference an unnamed,
automatically created and destroyed object variable.
There are three operand prototypes that correspond with the three types of operands:
1. The prototype of a positional operand is:

#type
2. The prototype of a non-positional operand is:

=type
3. The prototype of a keyword operand is any of these:

keyword
keyword=type
keyword=type:type
keyword=type:type:type
keyword=type:type:type:type
keyword=type:type:type:type:type

The keyword syntax is the same as any other DB/C label. It must begin with a letter and it may contain
letters, digits and certain other characters.
When a user-defined verb is encountered in a source program, the compiler checks its syntax against the
syntax defined in proto-list. If the syntax is incorrect, a compiler error is generated.
The verb statement defines an object-oriented user-defined verb if the first operand of proto-list is one of
these:

!make
!make(class-name)
!method
!destroy
!transient(class-name)

Execution of a user-defined verb defined by either of the two !make forms causes the compiler to
generate a make operation, followed by a call to the routine specified by the name of the user verb.

Page 113

If the class name is not specified (the first form of !make), then the user-defined verb must be used like
this:

verb objvar (class-name), parameter-list
If the class name is specified in the verb statement, then the user-defined verb must be specified like this:

verb objvar, parameter-list
In all cases, parameter-list is optional. If it is not specified, the comma preceding it is omitted.
The !method and !destroy forms require the user-defined verb to be specified like this:

verb objvar, parameter-list
Execution of a user-defined verb defined with !method causes the compiler to generate a call to the
method whose name is the same as the verb. Execution of a user-defined verb defined with !destroy
causes the compiler to generate a call to the method whose name is the same as the verb, followed by a
destroy operation.
The !transient form requires that the user-defined verb be specified normally, with the optional
parameter-list. It causes the compiler to generate a make operation, a call to the method and a destroy
operation, all using a temporary unnamed object variable.
The values for type are specified in this table:

continued on next page

Value Meaning
array any array variable
afile an afile variable
any any type of variable
carray a 1, 2 or 3 dimensional character variable array
carray1 a 1 dimensional character variable array
carray2 a 2 dimensional character variable array
carray3 a 3 dimensional character variable array
cnvar a character or numeric variable
cnvarlit a character or numeric variable or literal
comfile a comfile variable
cvar a character variable
cvarlit a character variable or literal
device a device variable
file a file variable
ifile an ifile variable
image an image variable
list a list or varlist variable
label a program label
nvar a numeric variable
nvarlit a numeric variable, literal or decimal constant

Page 114

Positional operand prototypes must precede the other prototypes. Positional operand prototypes define
required positional operands that must appear as operands of a user-defined verb. The order of the
operands must match the order of the prototypes. Positional operands are compiled as parameters on the
generated call or ccall statement.
There may only be one non-positional prototype in the list of prototypes. This prototype defines the type
or types of variables that may be included in the list of user-defined verb operands. The non-positional
operand may be before, after, or between key word operands in the operand list.
Any number of different keyword operand prototypes may be defined by a verb or cverb statement.
Keyword operand prototypes without the equal sign define keywords that may be found in the operand
list. Keyword operand prototypes with the equal sign define keywords that may be found in the operand
list, but that must be followed by an equal sign and one or more colon delimited variables that match the
variable types specified in the prototype.

Value Meaning
narray a 1, 2 or 3 dimensional numeric variable array
nvarray1 a 1 dimensional numeric array variable
nvarray2 a 2 dimensional numeric array variable
nvarray3 a 3 dimensional numeric array variable
pfile a pfile variable
object an object variable
queue a queue variable
resource a resource variable
var any single valued variable
varlit any single valued variable or literal

Page 115

Executable Statements

Executable statements are a class of instructions that cause actions to occur at runtime.

Page 116

add

label add numexp1 prep numvar3
label add numexp1 prep numexp2 giving numvar3
label add numexp1 prep numarray3
label add numarray1 prep numvar3
label add numarray1 prep numarray3
label add numarray1 prep numarray2 giving numarray3

numexp1 is the first source operand
numexp2 is the second source operand
numvar3 is the destination operand
numarray1 is the first source operand
numarray2 is the second source operand
numarray3 is the destination operand

Flags affected: equal, less, over
If the first format is used, then the source operand is added to the destination operand and the result is
placed in the destination operand.
If the second format is used, then the first source operand is added to the second source operand and the
result is placed in the destination operand.
If the third format is used, the source operand is added to each element of the destination operand.
If the fourth format is used, all elements of the source array are added together and the result is placed in
the destination operand.
If the fifth format is used, each element of the source array is added to the corresponding element in the
destination array.
If the sixth format is used, each element of the first operand array is added to the corresponding element
of the second source operand array, and the result is placed in the corresponding element of the
destination array.
Rounding takes place when the intermediate result is moved to the destination.

Page 117

and

label and charvar1 prep charvar2
label and numlit prep charvar
label and numvar1 prep numvar2

charvar1 is the source operand
numlit is the source operand
numvar1 is the source operand
charvar2 is the destination operand
charvar is the destination operand
numvar2 is the destination operand

Flags affected: equal, eos
See also: or, not, xor, rotate
For the first and second formats of the and statement, the bitwise and operation is performed on the form
pointed characters from the source and destination operands. The result is stored in the form pointed
position in the destination operand. If a decimal, hexadecimal, or octal constant is used as an operand, the
character represented by that character code is used. If the result is binary zero, equal is set. If either
string is null, eos is set and no changes are made.
The result of the and operation is determined by comparing the bits in each operand:

0 AND 0 evaluates to 0
0 AND 1 evaluates to 0
1 AND 0 evaluates to 0
1 AND 1 evaluates to 1

For the third format of the and statement, the source and destination operands are converted to 32 bit
integers and the operation is performed. The result is moved to the destination operand. If the result is
zero, equal is set. Otherwise, equal is cleared.

Page 118

append

label append exp prep charvar
exp is the source operand
charvar is the destination operand

Flags affected: eos
The append statement appends a string to a character variable. The logical string of the source is moved
to the destination beginning at the position immediately following the form pointed character of the
destination variable.
The move continues until the maximum length of the destination variable is reached or until the end of
the source logical string is encountered. The form pointer and logical length pointer of the destination are
set to point to the last character moved.
If characters are lost to truncation because the source does not completely fit into the destination, eos is
set.
If the source operand is null, no change is made to the destination.

Page 119

beep

label beep

Flags affected: none
See also: sound
The beep statement causes a beep to sound.

Page 120

branch

label branch numexp prep list
numexp is the index
list is a comma delimited list of program execution labels and program label variables

Flags affected: none
The branch statement causes program execution to continue with one of the entries in prog-label-list based
on the value of the index. Program execution continues at the statement specified by the Nth label in the
list. N is determined by converting the index to an integer value.
If the index is fractional, the fraction is truncated, not rounded. If the resulting integer is less than one or
greater than the number of entries in the list, then no branch takes place and execution continues with the
statement immediately following the branch instruction.

Page 121

bump

label bump charvar
label bump charvar prep numexp

charvar is a destination character variable
numexp is the amount to bump the form pointer

Flags affected: eos
The bump statement increments or decrements the form pointer of the destination variable. The new
form pointer value will be the value of the second operand plus the current value of the form pointer. If a
second operand is not specified, the new form pointer value will be the current value of the form pointer
plus one.
If the value of the second operand is fractional, the value is obtained by truncation, not rounding.
The resulting value of the form pointer must be between one and the logical length pointer value. If it is
not, then no change is made to the form pointer and the eos flag is set.

Page 122

call

label call prog-label
label call prog-label prep list
label call prog-label :objvar
label call prog-label :objvar prep list
label call prog-label if cond
label call prog-label if not cond
label call prog-label if function-key
label call prog-label if not function-key
label call prog-label if expression
label call prog-label if not expression

prog-label is a program execution label or a program label variable, except only a program execution
label for class method calls

list is a list of variables, literals, and expressions
cond is one of equal, less, over, eos or greater
function-key is one of F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17,

F18,F19, F20, up, down, left, right, insert, delete, home, end, pgup, pgdn, tab, bktab,
esc, or enter

expression is an algebraic expression
Flags affected: none
See also: keyin, moveadr, popreturn, pushreturn, setendkey, return, routine, verb
The call statement causes program execution to continue conditionally or unconditionally at the
statement specified by prog-label. If prog-label is a program execution label, execution will continue at the
statement with that label. If prog-label is a program label variable, execution will continue at the statement
with the label whose value has been most recently assigned to the label variable.
The forms of the call statement without the if keyword cause program execution to continue at the
statement specified by prog-label. If one of the other formats is used, program execution continues at the
statement specified by prog-label only if the condition or expression following the if is true or the
condition or expression following the if not is false.
In all cases, if execution will continue at prog-label, then the address of the statement following the call
statement is put onto the top of the return stack for later use by the return statement. The return stack
holds up to 200 return addresses.
The function-key forms of the call statement are only applicable following a keyin statement that was
interrupted when a function key was pressed. Each function-key condition may only be tested once with
a call, goto, or return. Conditions are reset after they are checked. All function-key conditions are also
reset at the start of keyin execution.
The forms of the call statement that contain prep list are call with parameter statements. Any variable,
literal or expression is allowed as a parameter. Label variables must be prefixed with the ~ character. The
call with parameters statement is used in conjunction with the routine statement.
Call statements may call the same program label without an intervening return, but they are not recursive
and expressions may not be used as parameters for such re-entrant executions of a call statement.
The forms of the call statement that contain :objvar are object-oriented calls to class methods. Execution
will continue at the program label with the name specified that is contained in the class for which the
object variable was instantiated (with the make statement). If the object variable is not instantiated, an
E 563 error occurs. If there is no method of that name in the appropriate class, then an E 551 error occurs.

Page 123

ccall

label ccall charexp
label ccall charexp prep list

charexp is the source operand
list is a list of variables and literals

Flags affected: depends on ccall routine
See also: cverb
The ccall statement executes a user-written C language routine.

Page 124

chain

label chain charexp
charexp is the source operand

Flags affected: none
See also: display, keyin, loadmod
The chain statement loads and begins execution of a new program (primary module). The logical string of
the source operand is a file name of a compiled program. If no extension is supplied, .dbc is assumed. The
chain statement unloads the previous primary module and all modules loaded with the loadmod
statement. Certain keyin and display attributes are also reset.

Page 125

change

label change resource, charexp
label change device, charexp
label change resource, charexp; list
label change device, charexp; list

resource is the resource variable
device is the device variable
charexp is the function operand
list is an optional list of character and numeric variables, literals, and control codes

Flags affected: none
See also: open, query
The change statement sends the logical string of the function operand and the optional list of variables,
literals, and control codes to the specified resource or device.
*sl is the blank suppression control code. This control code affects all remaining character variables in the
list unless it is cancelled by another control code. This control code causes characters from the first
character through the character pointed to by the length pointer to be sent, but no blanks are sent for the
characters between the length pointer and the maximum length of the string. If the variable is cleared,
then no characters are sent.
*ll is the logical length control code. This control code is in effect for all character variables remaining in
the list unless it is cancelled by another control code. The logical string of the character variable is sent.
*pl is the physical length control code. This control code is in effect for all character variables remaining
in the list unless it is cancelled by another control code. This control code causes characters from the first
character through the character pointed to by the length pointer to be sent, followed by blanks for each of
the characters between the length pointer and the maximum length of the string. If the variable is cleared,
blanks are sent for all characters in the variable. This is the default mode for character variables.

Page 126

charrestore

label charrestore charexp
charrest may be used in place of charrestore
charexp is the source operand

Flags affected: none
See also: charsave
The charrestore statement displays the logical string of the source operand in the current subwindow. The
characters stored in the logical string of the source are displayed left-to-right, and top-to-bottom into the
current subwindow. If there are not enough characters in the source to fill the current subwindow, then
the remaining characters in the subwindow are not changed. If there are too many characters in the
source to display, the extra characters are disregarded. The current video attributes apply to each
character displayed. After the charrestore operation is executed, the cursor is positioned in the upper left
corner of the subwindow.

Page 127

charsave

label charsave charvar
charvar is the destination operand

Flags affected: eos
See also: charrestore
The characters displayed in the current subwindow are stored in the destination variable starting at the
first character of the variable. The characters are saved in order from left-to-right and top-to-bottom. Each
character in the window uses one character in the string. The destination form pointer is set to one and
the length pointer is set to the number of characters stored.
If the destination variable is not big enough to store all the characters in the subwindow, then eos is set.
Otherwise, eos is cleared.

Page 128

check10

label check10 charvar1 prep charexp
label check10 charvar1 prep charexp, charvar2

ck10 may be used in place of check10
charvar1 is the source character variable
charexp is the character variable, character literal, or character expression used as the weighting factor
charvar2 is the destination character variable

Flags affected: equal, over
The check10 statement verifies that the modulo 10 check digit is correct and optionally returns the check
digit in the destination variable.
The logical strings of the source and weighting factor are used. The logical length of the source must be
exactly one greater than the logical length of the weighting factor. If either of the first two operands is null
or contains nondigits, or if the number of digits in the weighting factor is not one less than that of the
source, over is set and no further action takes place. The last character of the source logical string is the
check digit.
Assume M is the length of the source logical string and N is the length of the weighting logical string.
Remember that N+1=M. The check digit is computed by taking each character of the source string and
multiplying that by the respective character of the weighting string. This is done for N digits.
Each product is then converted to a number between 0 and 13 by adding the individual digits of the
product. The resulting sums are then added. The new sum is divided by 10 and the remainder is
subtracted from 10 to yield the check digit.
The resulting check digit value is then compared with the Mth digit of the source string. If they are the
same, equal is set.
If the second format of the check10 statement is used, the result of the calculation is stored in the first
character position of the destination variable. The form pointer and length pointer are set to one. If the
check digit was not calculated because the source string or weighting string was invalid, a blank character
is stored in the destination string.

Page 129

check11

label check11 charvar1 prep charexp
label check11 charvar1 prep charexp, charvar2

ck11 may be used in place of check11
charvar1 is the source character variable
charexp is the character variable, character literal, or character expression used as the weighting factor
charvar2 is the destination character variable

Flags affected: equal, over
The check11 statement verifies that the modulo 11 check digit is correct and optionally returns the check
digit in the destination variable.
The logical strings of the source and weighting factor are used. The logical length of the source must be
exactly one greater than the logical length of the weighting factor. If either of the first two operands is null
or contains nondigits, or if the number of digits in the weighting factor is not one less than that of the
source, over is set and no further action takes place. The last character of the source logical string is the
check digit.
Assume M is the length of the source logical string and N is the length of the weighting logical string.
Remember that N+1=M. The check digit is computed by taking each character of the source string and
multiplying that by the respective character of the weighting string. This is done for N digits.
Each product is then converted to a number between 0 and 13 by adding the individual digits of the
product. The resulting sums are then added. The new sum is divided by 11 and the remainder is
subtracted from 11 to yield the check digit. If the check digit value is 10, the check digit is the letter A. If
the check digit value is 11, the check digit is the letter B.
The resulting check digit is then compared with the Mth digit of the source string. If they are the same,
equal is set. equal is set if the check digit is 10 or 11.
If the second format of the check11 statement is used, the result of the calculation is stored in the first
character position of the destination variable. The form pointer and length pointer are set to one. If the
check digit was not calculated because the source string or weighting string was invalid, a blank character
is stored in the destination string. If the check digit value is a 10 or 11, a letter A or B is stored in the
destination string, respectively.

Page 130

chop

label chop charexp prep charvar
charexp is the source operand
charvar is the destination operand

Flags affected: eos
All characters in the logical string of the source operand are moved to the destination except for trailing
blanks. The destination form pointer is set to one and the logical length pointer is equal to the number of
characters moved. If the destination is not large enough to contain all characters to be moved, then as
many characters that will fit are moved, and eos is set.

Page 131

clear

label clear list
list is a comma delimited list of character and numeric variables, arrays, and list variables

Flags affected: none
See also: set
The clear statement zeroes and clears each element of the list. If an entry in the list is a numeric variable, it
is set to zero. If an entry in the list is a character variable, its form pointer and length pointer are set to
zero. If an entry in the list is a list variable, then each of the variables in the list is zeroed or cleared. If an
entry in the list is an array name, then each element of the array is zeroed or cleared. If an entry is any
other type of variable, the compiler will produce an error.

Page 132

clearadr

label clearadr list
list is a comma delimited list of address variables and arrays of address variables

Flags affected: none
The clearadr statement clears each address variable in the list. If the list contains an array of address
variables, then each element of the array is cleared.

Page 133

clearendkey

label clearendkey list
list is a comma delimited list of numeric variables and arrays, decimal constants, and equate labels

Flags affected: none
See also: getendkey, setendkey
The clearendkey statement disables the keyin ending keys specified in the list. When an ending key is
disabled, it is ignored. Each value in the list corresponds to an ending key. The list of keys is described in
the Keyboard and Display Manipulation Statements section of the DB/C Programming Language
General Information chapter. Negative values in the list are ignored.
The current ending keys are saved and restored by the statesave and staterestore statements, and by the
scrnsave and scrnrestore statements.
On initial entry to the DB/C DX runtime the ending keys are set to F1, F2, F3, F4, F5, F6, F7, F8, F9, F10,
F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, up, down, left, right and enter. Additional ending keys
will be active if dbcdx.keyin.endkey=xkeys runtime property is specified If the value 0 is contained in
the list, all the ending keys are disabled with the exception of the enter key. The enter key may also be
cleared by also specifying 256. Thus the statement, clearendkey 0, 256 causes all ending keys to be
disabled. Note that any subsequent non-timeout, non-keyin-continuous keyin statements will not
terminate.

Page 134

clearlabel

label clearlabel lblvar
lblvar is a label variable

Flags affected: none
See also: movelv, movevl, movelabel
The clearlabel statement clears the label variable.

Page 135

clock

label clock item prep charvar
item is one of: time, day, year, date, calendar, utccalendar, timestamp, utctimestamp,

utcoffset, weekday, version, release, pid, port, user, env, error, cmdline
charvar is the destination operand

Flags affected: eos
The clock statement provides operating system information. A string of characters is placed in the
destination operand. If the destination is not large enough to contain the entire string, the eos flag is set.
The value of the string of characters placed in the destination depends on the item.
time moves the current time into the destination. The string format is: hh:mm:ss. The

logical length is eight.
day moves the day of the year into the destination. The format is: ddd. The logical length

is three.
year moves the year into the destination. The format is: yy. The logical length is two.
date moves the date into the destination. The format is: mmddyy. The logical length is six.
calendar moves a string that contains the current time and date into the destination. The

format is:
Day Mth dd yyyy hh:mm:ss. The logical length is 24. Day is the three-letter
abbreviation for the day of the week. Mth is a three-letter abbreviation for the month.

utccalendar moves a string that contains the UTC (GMT) time and date into the destination. The
format is the same as for calendar.

timestamp moves a string that contains the current time and date into the destination. The
format is: yyyymmddhhmmsspp. The logical length is 16. yyyymmdd is the date.
hhmmsspp is the time. In some runtime environments, pp is hundredths of a second.
In other environments, pp is always 00.

utctimestamp moves a string that contains the current time and date into the destination. The
format is the same as for timestamp.

utcoffset moves a string that is the offset of this timezone from the prime meridian (GMT). The
logical length is 5. The first character is + or -. The remaining characters are digits.
For example, UTC offset for New York city when not on daylight savings time is
"-0500".

weekday moves a single digit into the destination which represents the day of the week. The
logical length is one. Sunday is represented by 1 and Saturday is represented by 7.

version moves the DB/C DX version into the destination. The format of the resulting string
depends on the operating system.

release moves the string that contains the exact release number including minor revision
numbers to the destination. The logical length varies, but the result will not contain
any blanks.

pid moves a string that is the operating system process id or process number of this
instance of the DB/C DX runtime to the destination. The logical length varies.

port moves a string that contains the port number into the destination. The logical length
is three. The port number string is always zero filled on the left. This value can be
provided by a runtime property.

user moves a string that contains the user ID into the destination. This value can be
provided by a runtime property.

Page 136

env moves a string into the destination that contains the environment information. The
environment variables are separated with blanks.

error moves a string that contains the most recent error message into the destination. If
there has not been an error, or a previous clock error statement has retrieved the
error, the form pointer and length pointer of the destination are set to zero.

cmdline moves a string into the destination that contains the characters on the command line
used to start the DB/C DX runtime. The contents of this string are operating system
dependent.

ui moves a three character string into the destination. If the GUI Smart Client is running
then the returned value is "GSC". If the character mode Smart Client is running then
the returned value will be "CSC". The value returned is "GUI" if Smart Client is not
running and the GUI DB/C DX runtime is running. The value returned is "CUI" if
Smart Client is not running and the character mode version of DB/C DX is running.

Page 137

close, closeall

label close file
label close file, mode
label close ifile
label close ifile, mode
label close afile
label close afile, mode
label close resource
label close device
label closeall

file is the label of a file declaration
ifile is the label of an ifile declaration
afile is the label of an afile declaration
mode is the file close mode which is one of: unchanged or delete
resource is the resource variable
device is the device variable

Flags affected: none
See also: open, prepare
In the first two forms, the close statement logically disconnects a data file from the file variable in the
DB/C program.
In the third and fourth forms, the close statement logically disconnects a data file and its index from the
ifile variable in the DB/C program.
In the fifth and sixth forms, the close statement logically disconnects a data file and its associative index
from the afile variable in the DB/C program.
If no file code mode is specified or if the unchanged file close mode is specified, then no other action is
taken If the file, ifile, or afile variable was opened in exclusive mode and the delete file close mode is
specified, then the close statement deletes the file. If the delete file close mode is specified but exclusive
file open mode was not specified, then the file close mode is ignored. Note that for ifile and afile
variables, both the data file and the index file will be deleted.
A close following immediately after a prepare statement for the same file variable will behave the same as
if the delete file close mode was specified.
In the final two forms of close, the resource or device variable is logically disconnected from the resource
or device.
In all cases, an attempt to close a file, resource, or device variable that is already closed is ignored.
The closeall statement closes all open files, print files, communications files, devices and resources.

Page 138

cmatch

label cmatch charvar prep charvar
label cmatch charvar prep charlit
label cmatch charvar prep hexcon
label cmatch charlit prep charvar
label cmatch charlit prep charlit
label cmatch charlit prep hexcon
label cmatch hexcon prep charvar
label cmatch hexcon prep charlit
label cmatch hexcon prep hexcon

charvar is a character variable
charlit is a one-character literal
hexcon is a constant or equate label

Flags affected: equal, less, eos
The cmatch statement compares the value of one character from each operand. If an operand is a
character variable, the form pointed character is used. If an operand is a decimal, octal, or hexadecimal
constant, the character represented by that character code is used in the comparison.
If the characters compared are the same, equal is set and less is cleared. If the characters do not match,
equal is cleared and less is set if the first operand character is greater. If the form pointer of either operand
is zero, eos is set, equal and less are cleared, and no comparison is made.

Page 139

cmove

label cmove charvar1 prep charvar2
label cmove charlit prep charvar2
label cmove hexcon prep charvar2

charvar1 is the source character variable
charlit is the source one-character literal
hexcon is the source constant or equate label
charvar2 is the destination character variable

Flags affected: eos
The cmove statement moves a single character from the source into the destination.
The source character is moved to the destination at the character position pointed to by the destination
form pointer. If the source is a character variable, the character pointed to by the form pointer is moved to
the destination. If the source is a decimal, octal, or hexadecimal constant, the character represented by
that character code is moved to the destination. No changes are made to the form pointers or logical
length pointers of either operand.
If the form pointer of either operand is zero, no move takes place and eos is set.

Page 140

comclr

label comclr cfile
cfile is the label of a comfile declaration

Flags affected: less
See also: recv, recvclr, send, sendclr
The comclr statement sets the status of the communications file to "clear". If the prior status was
"send-pending" or "receive-pending", then the send or recv operation is canceled and less is set.

Page 141

comctl

label comctl cfile, charvar
cfile is the label of a comfile declaration
charvar is a character variable containing the communications control characters

Flags affected: none
The comctl statement is the communications control statement used to send and receive special control
information.

Page 142

comopen, comclose

label comopen cfile, charexp
label comclose cfile

cfile is the label of a comfile declaration
charexp is the variable, literal, or character expression that contains the resource name

Flags affected: none
See also: recv, recvclr, send, sendclr
The comopen statement opens a communications resource. The communications resource name in the
second operand is operating system dependent. If the second operand is a character variable, the logical
string is used. If the file does not exist or cannot be accessed because of security considerations, an error
occurs. If a comopen statement is attempted on a comfile that is already open, then an implicit comclose is
performed before the comopen.
The comclose statement logically disconnects a communications file from the communications resource.

Page 143

compare

label compare numexp1 prep numexp2
label compare numexp1 prep numarray2
label compare numarray1 prep numexp2
label compare numarray1 prep numarray2

comp may be used in place of compare
numexp1 is the first source operand
numexp2 is the second source operand
numarray1 is the first source operand
numarray2 is the second source operand

Flags affected: equal, less, over
The compare statement compares numeric values. The flag settings indicate the result of the comparison.
The compare operation is similar to the subtract operation, except the result is not placed in a destination
operand and overflow cannot occur. The first source operand is subtracted from the second and the result
is examined. If the result is equal to zero, equal is set; otherwise it is cleared. If the result is less than zero,
less is set; otherwise it is cleared. over is always cleared.
If either operand is an array, multiple comparisons take place. equal is set if all comparisons are equal.
less is set if any comparison is less.

Page 144

compareadr

label compareadr var1 prep var2
var1 is the first source operand
var2 is the second source operand

Flags affected: equal
The compareadr statement compares the address of the two variables. equal is set if the two variables
contain the same address; otherwise equal is cleared.

Page 145

comtst

label comtst cfile
cfile is the label of a comfile declaration

Flags affected: equal, over, less, eos
See also: comwait, recv, send, wait
The comtst statement is used to test the status of the comfile. This operation should be executed after a
send, recv, comwait, or wait statement to test the status of the transmission.
The following table describes the flag settings:

The comwait or comtst operation must be executed after a recv statement because these operations cause
the data to be loaded into the list of variables. If a send or recv times out, the status will be set to send
done - error or receive done - error, respectively.

Status equal flag eos flag less flag over flag

send clear clear clear – –

send pending clear set – –

send done - success set clear – –

send done - error set set – –

receive clear – – clear clear

receive pending – – clear set

receive done - success – – set clear

receive done - error – – set set

Page 146

comwait

label comwait
label comwait cfile

cfile is the label of a comfile declaration
Flags affected: none
See also: comtst, recv, recvclr, send, sendclr, wait
The comwait statement suspends program execution until a send or recv is satisfied, or until a send or
recv timeout period elapses, or until an error occurs.
If the first format is used, then program execution is suspended until any currently open comfile has a
status other than "clear" or "pending".
If the second format is used, then program execution is suspended until the specified comfile has a status
other than "clear" or "pending".

Page 147

console

label console list
list is a list of character and numeric variables, arrays, list variables and literals

Flags affected: none
The variables and literals in the list are written to the console device.

Page 148

count

label count numvar prep list
numvar is the destination operand
list is a list of character and numeric variables, arrays, and list variables

Flags affected: equal, over
The number of keystrokes required to enter the variables in the list are counted and stored in the
destination operand.
The number of keystrokes required to enter a character variable is the logical length of the variable less
trailing blanks.
For a numeric variable, all digits plus the decimal point and minus sign are counted. Leading blanks and
trailing zeros after the decimal point are not counted. The decimal point is not counted either if only zeros
follow it.
If the count is zero, equal is set. If the count does not fit into the destination variable, over is set.

Page 149

debug

label debug

Flags Affected: none
If the program is running in a debugger environment, the debug statement causes the DB/C DX runtime
to suspend execution and enter the source debugger. If the program is not running in a debugger
environment, this statement does nothing.

Page 150

delete

label delete file
label delete ifile, charvar
label delete afile

ifile is the label of an ifile declaration
charvar is the source key
afile is the label of an afile declaration

Flags affected: over
See also: deletek
The delete statement is used to delete a record from a data file and a key from an index file. The delete
operation for sequential or random files deletes the most recently accessed record from the data file. The
delete operation for an indexed file deletes a key from the index that matches the source key. It also
deletes from the data file the logical record that is associated with the key.
For an indexed file, the logical string from the character variable that is the source key is used to identify
the logical record to be deleted. The source key matches the key in the index if they contain identical
characters and have the same number of characters. The source key also matches the key in the index if
the source key has more characters than the index key, all characters in the index key match characters in
the source key, and all remaining characters in the source key are blank. If neither of these cases occurs,
the source key does not match a key in the index.
If the source key matches a key in the index, then the record and the index key are deleted. If the source
key does not match a key in the index, over is set and no change occurs. If the form pointer of the source
key operand is zero, it is considered null, and the last accessed record is deleted. If the last access to the
index file was unsuccessful, then an error occurs.
The delete operation for an AIM file deletes the most recently aimdexed accessed record from the data
file.

Page 151

deletek

label deletek ifile, charvar
ifile is the label of an ifile declaration
charvar is the source key

Flags affected: over
See also: delete
The deletek statement deletes a key from the index that matches the source key. No change is made to the
logical records in the indexed file.
The logical string from the character variable that is the source key is used to identify the index key to be
deleted. The source key matches the key in the index if they contain identical characters and have the
same number of characters. The source key also matches the key in the index if the source key has more
characters than the index key, all characters in the index key match characters in the source key, and all
remaining characters in the source key are blank. If neither of these cases occurs, the source key does not
match a key in the index.
If the source key matches a key in the index, then the index key is deleted. If the source key does not
match a key in the index, over is set and no change occurs. If the form pointer of the source key operand
is zero, it is considered null, and the last accessed key is deleted. If the last access to the index file was
unsuccessful, then an error occurs.

Page 152

destroy

label destroy objvar
objvar is the object variable

Flags affected: none
See also: call, make
The destroy statement causes the object referred to by the object variable to go out of existence. All
variables that were created by the make statement are destroyed. If the object variable does not refer to an
instantiated object, the destroy statement does nothing.
If a destroy routine exists for the class for which the object variable was instantiated, then the destroy
routine, as well as any inherited destroy routines, are called before the variables go out of existence. The
deepest ancestor destroy routine is called last and the rest of the destroy routines are called in reverse
order of inheritance. If any of the destroy routines cannot be found, then an E 562 error occurs.
If the destroy statement is executed in the runtime scope of the instance of the class that the object
variable refers to, then the instance goes out of existence and an implicit return is made to the statement
following the method call that caused this instance to gain scope. The return stack is adjusted accordingly.

Page 153

disable

label disable

Flags affected: over
See also: enable
The disable statement causes all keystroke and timeout trap events to be deferred until an enable
statement executes, a keyin statement executes, or a program chaining occurs. Program chaining can
occur as a result of a chain statement, a stop statement, or an error that is not trapped.
If the disable state is currently active, then this statement is ignored and the over flag is set. Otherwise,
the over flag is cleared.

Page 154

display

label display list
list is a comma delimited operand list of variables, literals, octal and hexadecimal constants,

expressions, and display control codes
Flags affected: none
See also: format, keyin
The display statement displays characters on the screen, positions the cursor, alters display attributes, and
affects subwindow dimensions. The operands identify the items to be displayed and their formats. The
list of operands consists of character or numeric variables and arrays, literals, constants, expressions, and
* control codes.
Normally, display advances the cursor to the first column of the line following the last character
displayed. If the last character displayed is on the bottom line of the subwindow, all lines in the
subwindow are scrolled up one line and the cursor is positioned in the lower left corner of the
subwindow. If a semicolon (;) follows the last item in the operand list, the cursor will be positioned
directly after the last character displayed. The use of the semicolon protects against inadvertent screen
scrolling. A runtime property may modify the feature.
Control codes modify the manner in which data is displayed on the screen.
When a numeric variable is encountered in the list of operands, its characters are displayed starting at the
current cursor position. The cursor remains on the position following the last character displayed.
When a character variable is encountered in the list of operands, the characters from the first physical
character of the variable through the character pointed to by the logical length pointer are displayed.
Blanks are displayed for the number of characters that are between the length pointer of the variable and
the maximum length of the variable. In this way, the number of characters displayed is the maximum
length of the character variable. If the form pointer of the variable is zero, blanks are displayed to the
maximum length of the variable.
When a literal is encountered in the list of operands, its characters are displayed starting at the current
cursor position.
When an octal or hexadecimal constant is encountered in the list of operands, the character represented
by that character code is displayed in the same manner as a single character in a character variable.
When an expression is encountered in the list of operands, the expression is evaluated and the result is
displayed in the same manner as a character or numeric variable.
*p=h:v is the cursor positioning control code. h and v may be decimal constants or numeric variables.
The equal sign is optional. This control code resets the cursor position to the h horizontal position on the v
line of the current subwindow.
*hu is the home up control code. This control code positions the cursor in the upper left corner of the
current subwindow. It has the same effect as *p=1:1.
*hd is the home down control code. This control code positions the cursor in the bottom left corner of the
current subwindow.
*eu is the end up control code. This control code positions the cursor in the upper right corner of the
current subwindow.
*ed is the end down control code. This control code positions the cursor in the lower right corner of the
current subwindow.
*v=v is the set vertical position control code. A colon (:) or a blank space may replace the equal sign. v is
a decimal constant or numeric variable which represents the vertical position of the cursor in the current
subwindow.

Page 155

*va=n is the adjust vertical position control code. A colon (:) or a blank space may replace the equal sign.
n is a signed decimal constant or numeric variable which represents the number of vertical positions the
cursor is to be moved relative to the current cursor position.
*h=h is the set horizontal position control code. A colon (:) or a blank space may replace the equal sign. h
is a decimal constant or numeric variable which represents the horizontal position of the cursor in the
current subwindow.
*ha=n is the adjust horizontal position control code. A colon (:) or a blank space may replace the equal
sign. n is a signed decimal constant or numeric variable which represents the number of horizontal
positions the cursor is to be moved relative to the current cursor position.
*n=n or *n is the next line control code. n is an equate, decimal constant, or numeric variable that
represents the number of lines the cursor will advance. The cursor position is set to horizontal position
one on the new line. If the current cursor position is on the bottom line of the subwindow, the subwindow
is scrolled up until the cursor has advanced the specified number of lines. If n is equal to zero, the control
code is ignored. If n is not specified, the cursor is positioned on the first column of the next row (that is, n
defaults to one). A runtime property may modify this feature.
*c or *c=n is the carriage return control code. The cursor is positioned on the first column of the current
line. n is an equate, decimal constant, or numeric variable. If n is equal to zero, the control code is ignored.
Otherwise, n has no effect on the functioning of the control code.
*l or *l=n is the line feed control code. This control code positions the cursor in the next row of the
current column. If the current cursor position is on the last line of the subwindow, the screen is rolled up
one line. n is an equate, decimal constant, or numeric variable that represents the number of lines the
cursor will advance. If n is equal to zero, the control code is ignored. A runtime property may modify this
feature.
*curson is the cursor on control code. This code causes the cursor to appear on the screen during keyin of
a variable. By default, the cursor will appear on the screen during keyin of a variable. Therefore, it is only
necessary to specify the *curson control code if the *cursoff control code has been previously specified or
if the cursor mode has been changed.
*cursoff is the cursor off control code. This code suppresses the cursor display on the screen. This code is
canceled by the *curson code, by chaining to another program, or by changing the cursor mode.
*cursor=mode is the control code that controls the cursor mode. mode may be one of *on, *off, or *norm.
*cursor=*on means that the cursor will always be displayed. *cursor=*off means that the cursor will
never be displayed. *cursoff is a synonym for *cursor=*off. *cursor=*norm means that the cursor will
be off except when the program is in a keyin statement. *curson is a synonym for *cursor=*norm.
*cursor=*norm is the default. The cursor mode will return to *norm upon execution of a chain
statement.
*cursor=shape is the control code that controls the cursor shape. shape may be one of *uline, *half, or
*block. *cursor=*uline means that the cursor will be displayed as an underline. *cursor=*half means
that the cursor will be displayed at half of its normal height. *cursor=*block means that the cursor will
be displayed as a full block at its normal height. *cursor=*block is the default. The specified cursor
shape does not affect the cursor mode. The cursor shape will return to *block upon execution of a chain
statement.
*r or *r=n is the screen roll up control code. The screen is rolled up and the cursor is left at the same
location. n is an equate, decimal constant, or numeric variable that represents the number of lines the
screen is rolled up. If n is equal to zero, the control code is ignored.
*rd or *rd=n is the screen roll down control code. The screen is rolled down and the cursor is left at the
same location. n is an equate, decimal constant, or numeric variable that represents the number of lines
the screen is rolled down. If n is equal to zero, the control code is ignored.
*scrright=scroll-data is the scroll right control code. A colon (:) or a blank space may replace the equal
sign. scroll-data is a colon delimited list which includes: character variables and literals, numeric variables
and literals, unreferenced arrays, list variables, decimal constants, octal constants, hexadecimal constants,
equates, any of the display attributes control codes, or any of the graphics control codes (excluding the

Page 156

double line graphics control codes). In addition, the scroll-data list may include *scrend, which
designates the end of the list. *scrend is not required. A colon can be used to continue the scroll-data list
on the next program line. *scrright scrolls the current subwindow to the right by one column. scroll-data
list items are placed top to bottom in the far left column of the current subwindow. Characters in the far
right column are lost.
*scrleft=scroll-data is the scroll left control code. A colon (:) or a blank space may replace the equal sign.
scroll-data is a colon delimited list which includes: character variables and literals, numeric variables and
literals, unreferenced arrays, list variables, decimal constants, octal constants, hexadecimal constants,
equates, any of the display attributes control codes, or any of the graphics control codes (excluding the
double line graphics control codes). In addition, the scroll-data list may include *scrend, which
designates the end of the list. *scrend is not required. A colon can be used to continue the scroll-data list
on the next program line. *scrleft scrolls the current subwindow to the left by one column. scroll-data list
items are placed top to bottom in the far right column of the current subwindow. Characters in the far left
column are lost.
*opnlin is the open line control code. This code causes all lines in the current subwindow below the
current line to be moved down one line. The characters in the current line from the current cursor
position through the end of the line remain in the same columns but are shifted down one line. Data on
the bottom line of the screen is lost.
*clslin is the close line control code. This code causes the characters from the current cursor position
through the end of the line to be erased. The erased characters are replaced by the characters in the same
column positions in the line following the current line. The line following the current line is erased and a
roll up occurs between this line and the bottom line of the current subwindow.
*inslin is the insert line control code. This code causes a roll down to occur from the line containing the
current cursor position through the bottom line of the current subwindow. A line of blank spaces is
inserted in the line containing the current cursor position. The bottom line of the current subwindow is
lost.
*dellin is the delete line control code. This code causes the line containing the current cursor position to
be erased. A roll up occurs from the line following the current line through the bottom line of the current
subwindow. A line of blank spaces is inserted in the bottom line of the current subwindow.
*inschr=h:v is the insert character control code. A colon (:) or a blank space may replace the equal sign. h
and v are decimal constants or numeric variables are decimal constants or numeric variables which
represent horizontal and vertical coordinates. All characters between the current cursor position and h:v
are shifted to the right one space. One blank character is placed at the current cursor position. The
character originally at h:v is lost.
*delchr=h:v is the delete character control code. A colon (:) or a blank space may replace the equal sign.
h and v are decimal constants or numeric variables which represent horizontal and vertical coordinates.
All characters between the current cursor position and h:v are shifted to the left one space. The character
originally at the current cursor position is lost. One blank character is placed at h:v.
*es erases the entire subwindow. The cursor position is set to 1, 1.
*el erases everything from the current cursor position through the end of the line.
*ef erases all characters from the cursor through the end of the current line and also erases all subsequent
lines in the subwindow.
*rptchar=charexp:n is the repeat character control code. A colon (:) or a blank space may replace the
equal sign. charexp is a character variable, character literal, character expression, or a graphics character
control code. If charexp is a variable, then the form pointed character is the character to be repeated. n is a
decimal constant or numeric variable that specifies the number of times the character is to be repeated.
Line wrap will not take place.
*rptdown=charexp:n is the repeat character down control code. A colon (:) or a blank space may replace
the equal sign. charexp is a character variable, character literal, character expression, or a graphics
character control code. If charexp is a variable, then the form pointed character is the character to be

Page 157

repeated. n is a decimal constant or numeric variable that specifies the number of times the character is to
be repeated. Characters are displayed from top to bottom, one per line.
*click is the control code that causes a click to sound. This option is unavailable on some terminals.
*b is the beep control code. This code causes a beep sound to occur.
*zs is the zero suppress control code. This control code affects only the next variable in the list. If the next
variable is a numeric variable with a zero value, blanks are displayed for each character position of the
numeric variable (including the decimal point).
*zf is the zero fill control code. This control affects only the next variable in the list. If the next variable is
a numeric variable, then any blanks are replaced by zeros. In addition, the minus sign (if it exists) is
displayed as the first character in the variable.
*sl (or *+) in a display operation is the trailing blank suppression control code. This control code affects
display of all character variables that follow in the list of operands. This control code displays character
variables from the first physical character in the variable through the character pointed to by the length
pointer. No blanks are displayed after the length pointer. If the form pointer of the variable is zero, no
characters are displayed and the cursor position is not changed.
*ll in a display operation is the logical string display control code. This control code affects display of all
character variables that follow in the list of operands. This control code displays the characters contained
in the logical string of the variable. If the form pointer of the variable is zero, no characters are displayed
and the cursor position is not changed.
*pl (or *-) in a display operation is the display suppression off control code. This control code causes
display of character variables to revert to the normal method of display. It cancels the effects of the *sl
and *ll control codes.
*dcon in a display operation is the display comma control code. This control code causes a comma to be
displayed instead of the decimal point (period) in numeric variables. This control code affects all numeric
variables that follow. It is cancelled by the *dcoff control code or by chaining to another program. This
control code also affects the operation of the keyin statement.
*dcoff is the cancel display comma control code. This control code cancels the effect of the *dcon control
code.
*format=charexp is the format control is the format control code. This control code affects the next
variable in the list. charexp is a format mask which is used to reformat numeric and character data. Refer
to the explanation of the format statement for information about how the mask is used.
*revon (or *hon) is the video control code for reverse video display. This control code affects display of
all variables and literals that follow in the list of operands. The control code is canceled by the *revoff
and *alloff control codes, or by chaining to another program. This control code displays all characters in
inverse video mode on the screen. If colors are in use, this control code reverses the back ground and
foreground colors. This feature is unavailable on certain terminals.
*revoff is the reverse video off control code. This control code cancels the effect of *revon. Characters are
displayed in normal white on black, or foreground on background if colors are in use.
*boldon (or *dion or *v2lon) is the video control code for high-intensity display. This control code
affects display of all variables and literals that follow. It is canceled by the *boldoff and *alloff control
codes, or by chaining to another program. All characters are displayed in high-intensity mode on the
screen. This feature is unavailable on certain terminals.
*boldoff (or *dioff) is the video control code that reverses the effect of the *boldon control code. This
control code causes characters to be displayed in normal-intensity mode.
*ulon is the video underline control code. This control code affects display of all variables and literals
that follow in the operand list. It is canceled by the *uloff and *alloff control codes, or by chaining to
another program. All characters are displayed with an underline. This feature is unavailable on certain
terminals.

Page 158

*uloff is the video underline off control code. This control code cancels the effect of the *ulon control
code.
*blinkon is the video blink control code. This control code affects display of all variables and literals that
follow in the operand list. It is canceled by the *blinkoff and *alloff control codes, or by chaining to
another program. All characters that are displayed will blink. This feature is unavailable on certain
terminals.
*blinkoff is the video blink off control code. This control code cancels the effect of the *blinkon control
code.
*black, *blue, *green, *cyan, *red, *magenta, *yellow, and *white are the fixed color control codes.
These codes affect display of all variables and literals that follow in the operand list. They are canceled by
the *coloroff control code. All characters that are displayed will appear in the designated colors.
*color=color (or *fgcolor=color) is the variable color control code. color may be a decimal constant, a
numeric variable, or one of the fixed color control codes. If color is a decimal constant or a numeric
variable, the values 0 through 7 correspond to the fixed color control codes respectively. The values 8
through 15 correspond to the highlighted fixed color control codes respectively. This control code affects
display of all variables and literals that follow in the operand list. All characters that are displayed will be
displayed in the color specified by color. This control code is canceled by *coloroff.
*bgcolor=color is the background color control code. color may be a decimal constant, a numeric variable,
or one of the fixed color control codes. This control code affects display of all variables and literals that
follow. All characters that are displayed will be displayed with the background color specified by color.
This control code is canceled by *coloroff.
*coloroff is the color off control code. This control code resets colors to the default colors (usually white
on black).
*alloff (or *hoff) is the video attributes off control code. The effects of all video attributes control codes
are turned off. This control code has the effect of *revoff, *boldoff, *uloff, and *blinkoff. A DB/C DX
runtime property may modify this feature.
*hln, *vln, *crs, *ulc, *urc, *llc, *lrc, *rtk, *dtk, *ltk, *utk, *upa, *dna, *lfa, and *rta are the
horizontal line, vertical line, crossed lines, upper left corner, upper right corner, right tick mark, down tick
mark, left tick mark, up tick mark, up arrow, down arrow, left arrow, and right arrow graphics control
codes, respectively. These control codes cause the specified graphics character to be displayed.
*dblon, *dbloff, *hdblon, *hdbloff, *vdblon, and *vdbloff are the double line graphics control codes.
These control codes affect the characters displayed by the graphics control codes, except the arrow
graphics characters. *dblon causes all lines (both horizontal and vertical) to be displayed as double lines.
*dbloff causes all lines to be displayed as single lines. *hdblon causes all horizontal lines to be displayed
as double lines. *hdbloff causes all horizontal lines to be displayed as single lines. *hdblon and
*hdbloff do not affect the display of vertical lines. *vdblon causes all vertical lines to be displayed as
double lines. *vdbloff causes all vertical lines to be displayed as single lines. *vdblon and *vdbloff do
not affect the display of horizontal lines.
*setswtb=t:b is the set window top/bottom control code. t and b are decimal constants or numeric
variables that define the top and bottom vertical parameters of a subwindow. When a subwindow is
defined, all control codes operate relative to the defined subwindow. The cursor position initially will be
set to *p=1:1. The *setswtb control code is canceled by the *resetsw control code.
*setswlr=l:r is the set window left/right control code. l and r are decimal constants or numeric variables
that define the left and right horizontal parameters of a subwindow. When a subwindow is defined, all
control codes operate relative to the defined subwindow. The cursor position initially will be set to
*p=1:1. The *setswlr control code is canceled by the *resetsw control code.
*setswall=t:b:l:r is the set window all control code. t, b, l, and r are decimal constants or numeric
variables that define the vertical and horizontal parameters of a subwindow. When a subwindow is
defined, all control codes operate relative to the defined subwindow. The cursor position initially will be
set to *p=1:1. The *setswall control code is canceled by the *resetsw control code.

Page 159

*resetsw cancels the effects of the *setswtb, *setswlr, and *setswall control codes. The cursor position
initially will be set to *p=1:1.
*raw is the raw output control code. The effect of this control code is to ignore any window boundaries.
This is useful when escape sequences are being displayed. This control code is canceled by *rawoff or by
chaining to another program.
*rawoff is the control code that cancels the effect of the *raw control code.
*w=n, *wn, and *w cause the program to wait. n is an integer decimal constant that specifies the number
of seconds for the program to wait. If n is not specified, the program waits one second.
*pon is the printer on control code. The option is only available on certain terminals. The auxiliary
printer port of the terminal is turned on by this control code. This control code also causes raw mode to
be in effect. The *pon control code is canceled by the *poff control code or by chaining to another
program.
*poff is the control code that cancels the effect of the *pon control code.

Page 160

divide

label divide numexp1 prep numvar3
label divide numexp1 prep numexp2 giving numvar3
label divide numexp1 prep numarray3
label divide numarray1 prep numvar3
label divide numarray1 prep numarray3
label divide numarray1 prep numarray2 giving numarray3

div may be used in place of divide
numexp1 is the first source operand
numexp2 is the second source operand
numvar3 is the destination operand
numarray1 is the first source operand
numarray2 is the second source operand
numarray3 is the destination operand

Flags affected: equal, less, over
If the first format is used, then the destination operand is divided by the source operand and the result is
placed in the destination operand.
If the second format is used, then the second source operand is divided by the first source operand and
the result is placed in the destination operand.
If the third format is used, the source operand is divided by each element of the destination operand.
If the fourth format is used, each element of the source array is divided successively into the destination
operand. The result is placed in the destination operand.
If the fifth format is used, each element of the source array is divided by the corresponding element in the
destination array.
If the sixth format is used, each element of the first source array is divided by the corresponding element
of the second source array, and the result is placed in the corresponding element of the destination array.
The precision used for the intermediate result depends on the number of operands. In the following, L is
the number of digits to the left of the decimal point in the intermediate result and R is the number of
digits to the right of the decimal point in the intermediate result. L1, R1, L2, R2, L3 and R3 correspond
with the digits in the first, second and third parameters, respectively.
In the two operand forms of the divide statement, the precision of the intermediate result is:

L = L2 + R1
R = R1 + R2

In the three operand forms of the divide statement, the precision of the intermediate result is:
L = L2 + R1
R = R3 + 1

Rounding takes place when the intermediate result is moved to the destination.

Page 161

draw

label draw image;list
image is the destination image variable
list is a comma delimited list of parameters

Flags affected: none
The draw statement draws graphics and text on the destination image variable.
In non-graphical versions of DB/C DX, execution of the draw statement results in an error.
There is a current draw position that is always valid. This draw position is made up of a horizontal and a
vertical component. The upper left corner of the screen is draw position 1,1. The draw position increases
down and to the right. The units of the draw position are screen pixels.
The following keywords and values make up the list of parameters.
p=h:v is the set draw position parameter. h and v may be decimal constants or numeric variables. The
current draw position is set to the h horizontal position and to the v vertical position.
h=h is the set horizontal draw position parameter. h may be a decimal constant or numeric variable. The
horizontal component of the draw position is set to h. The vertical component is not changed.
v=v is the set vertical draw position parameter. v may be a decimal constant or numeric variable. The
vertical component of the draw position is set to v. The horizontal component is not changed.
ha=n is the adjust horizontal draw position parameter. n may be a signed decimal constant or a numeric
variable. The value of n is added to the current horizontal draw position. The vertical component is not
changed.
va=n is the adjust vertical draw position parameter. n may be a signed decimal constant or a numeric
variable. The value of n is added to the current vertical draw position. The horizontal component is not
changed.
color=color is the set current draw color parameter. color may be a decimal constant, a numeric variable, or
a fixed color code. If color is a decimal constant or numeric variable, it specifies the new color. This value
is an integer that corresponds to a 24-bit RGB value (red is low eight bits, green is middle eight bits, and
blue is high eight bits). Fixed color codes are: *black, *blue, *green, *cyan, *red, *magenta, *yellow,
and *white.
erase is the erase screen parameter. The entire image is changed to the current draw color and the draw
position is set to 1,1.
replace=oldcolor:newcolor is the replace color parameter. oldcolor and newcolor may be decimal constants,
numberic variables, or fixed color codes just as in the color= parameter. All pixels in the image that are
the color specified by oldcolor are changed to be the color specified by newcolor.
dot is the draw dot parameter. One pixel is drawn in the current draw color at the current draw position.
bigdot=n is the draw big dot parameter. n may be a decimal constant or numeric variable. A solid circle is
drawn in the current draw color with the center at the current draw position and a radius of n pixels.
linewidth=n is the set line width parameter. n may be a decimal constant or numeric variable. The
current line width is set to be n pixels wide. The default line width is one.
linetype=linecode is the set line type parameter. linecode may be *solid or *revdot. *solid means a solid
line. *revdot means an exclusive-or dotted line. *solid is the default line type.
line=h:v is the draw line parameter. h and v may be decimal constants or numeric variables. A line is
drawn from the current draw position to the position specified by h and v. The line is drawn in the
current draw color of the current line width and type. The current draw position is reset to h:v.
circle=n is the draw circle parameter. n may be a decimal constant or numeric variable. A circle is drawn
in the current draw color with the center at the current draw position and a radius of n pixels. The circle is
drawn with a line that is the current line width and type.

Page 162

box=h:v is the draw box parameter. h and v may be decimal constants or numeric variables. The current
draw position is one corner of the box. h:v specifies the diagonally opposite corner of the box. The box is
drawn with a line that is the current line width and type.
rectangle=h:v is the draw filled rectangle parameter. h and v may be decimal constants or numeric
variables. The current draw position is one corner of the rectangle. h:v specifies the diagonally opposite
corner of the rectangle. The filled rectangle is drawn in the current draw color.
triangle=h1:v1:h2:v2 is the draw filled triangle parameter. h1, v1, h2, and v2 may be decimal constants
or numeric variables. The current draw position is one corner of the triangle. h1:v1 is the second corner of
the triangle. h2:v2 is the third corner of the triangle. The filled triangle is drawn in the current draw color.
font=font is the set draw font parameter. font is a character variable or literal that specifies a font name.
linefeed is the draw text linefeed parameter. The vertical component of the draw position is increased by
the height (in pixels) of the current font. The height includes normal interline space.
newline is the draw text new line parameter. The horizontal component of the draw position is set to one.
The vertical component of the draw position is in creased by the height (in pixels) of the current font. The
height includes normal interline space.
text=text is the draw text parameter. text is a character variable, numeric variable, or character literal that
contains the string of characters to be drawn. The characters are drawn in the current draw color with the
current font starting at the current draw position. The upper left corner of a character is its draw position.
As each character is drawn the horizontal component of the draw position is increased incrementally by
the width of the character drawn. The draw position is placed at the upper left corner of the character to
the right of the last character drawn.
atext=text:n is the draw angled text parameter. text is a character variable, numeric variable, or character
literal that contains the string of characters to be drawn. The characters are drawn such that the upper left
corner of the text is at the current draw position. n defines the angle, in degrees, at which the text is
drawn. The angle is the same as for a compass, that is north (up) is zero degrees, east (normal) is 90
degrees, south (down) is 180 degrees, and west (upside down) is 270 degrees. The draw position is not
changed.
ctext=text:n is the draw centered text parameter. text is a character variable, numeric variable, or
character literal that contains the string of characters to be drawn. The characters are drawn in the current
draw color with the current font. The characters are drawn centered in the area bounded on the left by the
current draw position and bounded on the right by the position defined by adding the current horizontal
position with n. The draw position is not changed.
rtext=text is the draw right justified text parameter. text is a character variable, numeric variable, or
character literal that contains the string of characters to be drawn. The characters are drawn such that the
rightmost edge of the rightmost character is at the current draw position. The draw position is not
changed.
image=image is the draw image parameter. image is an image variable. The image referred to by image is
copied over a rectangle in the destination image. The current draw position defines the upper left corner
of the rectangle.
clipimage=image:h1:v1:h2:v2 is the clipped image copy parameter. image is an image variable. h1, v1,
h2, and v2 may be decimal constants or numeric variables. A portion of the image referred to by image is
copied over the destination image. The portion of the image to copy is bounded by h1:v1 and h2:v2.
stretchimage=image:h:v is the stretch/compress image copy parameter. image is an image variable. The
image referred to by image is first stretched and/or compressed to be the size specified by h and v. This
stretched/compressed image is then copied to a rectangle in the destination image. The current draw
position defines the upper left corner of the rectangle.
imagerotate=n is the draw rotated image parameter. The image is drawn so that the upper left corner of
the image is at the current draw position. n defines the angle, in degrees, at which the image is drawn.
The angle is the same as for a compass, that north (up) is zero degrees, east (normal) is 90 degrees, south
(down) is 180 degrees, and west (upside down) is 270 degrees. The draw position is not changed.

Page 163

edit

label edit var prep charvar1
label edit var prep charvar2, charvar3
label edit var prep charlit, charvar3
label edit var prep charvar2 giving charvar3
label edit var prep charlit giving charvar3

var is the source operand
charvar1 is the destination operand which contains mask characters
charvar2 is the operand which contains mask characters
charvar3 is the destination operand
charlit is the operand which contains mask characters

Flags affected: less, over, eos
The edit statement formats numeric and character data. It uses an editing mask which specifies the format
of the result. The mask controls a character-by-character move from the source operand into the
destination operand.
The data in the source operand is edited into the logical string of the destination operand. Editing takes
place from left to right. Character by character, the logical string of the source is moved to the destination
following the rules of the edit mask. The contents of the source operand are not changed. The destination
form pointer and length pointer also are not changed.
The second operand contains special mask characters that denote how data from the source is moved to
the destination. The mask can contain any character, but only the special characters affect the movement
of data. Editing proceeds as follows: each character in the mask is compared with the special characters. If
the character in the mask is not one of the special characters, then it is left unchanged and editing
continues with the next character in the mask.
If the first form is used, the destination initially contains the editing mask. The logical string of the source
is edited into the logical string of the destination.
If any of the remaining forms are used, the logical string of the source is edited into the destination
operand, using the second operand as the editing mask. The contents of the second operand are not
changed. The logical string of the second operand is moved to the third operand (the destination).
If the form pointer of the source or destination operand is zero, the eos flag is set and no editing takes
place.
If the logical string of the destination is shorter than the logical string of the source, the eos flag is set and
only those characters fit in the destination are moved. If the logical string of the destination is longer than
the logical string of the source, the source is logically extended with blanks if it is a character variable or
with zeros if it is a numeric variable.
If any edit error is detected while moving characters to the destination, the over flag is set. If no edit
errors are detected while moving characters to the destination, the over flag is cleared. The less flag is set
if a dollar sign character is stored in the destination over a non-zero digit.
The editing of a character source uses different mask characters than the editing of a numeric source.
Four special mask characters are applicable if the source operand is a character variable:
 9 A character is moved from the source. An edit error occurs if the character moved is not a

digit.
 A A character is moved from the source. An edit error occurs if the character moved is not an

alphabetic or blank character.
 B The letter B in the destination is changed to a blank and no characters are moved from the

source.
 X A character is moved from the source.

Page 164

Nine special mask characters are applicable if the source operand is a numeric variable:
 9 A character is moved from the source. An edit error occurs if the character moved is not a

digit.
 B The letter B in the destination is changed to a blank and no characters are used from the

source.
 Z Zero suppression is in effect for the character to be moved. If the character to be moved from

the source operand is a leading zero, a blank is stored in the destination and the source
character is discarded. Otherwise, the source character is stored in the destination and zero
suppression is inactivated.

 , The comma remains in the destination and no character is moved from the source. If zero
suppression is in effect, the comma is changed to a blank character.

 . The period is left unchanged in the destination. Zero suppression is in activated. If a floating
sign was requested and has not been stored in the destination, it is stored in the character to
the left of the period.

 + This character must appear as the first or last character in the logical string of the destination.
If it is the first character in the logical string, a + or - sign will be stored in the first position. If
it is the last character in the logical string, then a + or - sign will be stored in the last
character position.

 - This works the same as a + sign except that if the source is positive, a blank is stored instead
of a + sign.

 $ Dollar sign fill is in effect for the character to be moved. If the character to be moved is 0 and
no non-zero digits have been stored in the destination, then the dollar sign character is left
unchanged and the character from the source is discarded. At least one dollar sign character
will always be stored in the destination, even if a significant digit has to be discarded.

 * Asterisk fill is in effect for the character to be moved. If the character to be moved is a leading
zero, the asterisk character remains in the destination and the character from the source is
discarded.

Page 165

empty

label empty list
list is a comma delimited list of queue variables

Flags affected: none
The empty statement discards all messages in the specified queue(s).

Page 166

enable

label enable

Flags affected: none
See also: disable
The enable statement causes all keystroke trap events to be enabled. This reverses the action of the disable
statement.

Page 167

endset

label endset charvar
charvar is the destination operand

Flags affected: none
See also: lenset
The form pointer of the destination is set to the same value as the length pointer.

Page 168

erase

label erase charexp
charexp is the file name

Flags affected: over
The erase statement deletes the file specified by charexp. over is set if the specified file cannot be found. If
the file exists and the erase statement is unsuccessful, an IO error occurs.

Page 169

execute

label execute charexp
charexp is the source operand

Flags affected: over
The execute statement causes the command line in the logical string of the source operand to be executed
by the operating system command interpreter (shell). A new task is created to execute that command line.
Program execution continues immediately without waiting for the new task to finish.
If the source operand is a null string, over is set.

Page 170

extend

label extend charvar
label extend charvar prep dcon
label extend charvar prep numvar

charvar is the destination operand
dcon is the source operand
numvar is the source operand

Flags affected: eos
The extend statement appends one or more blank spaces to the destination variable following the form
pointed character.
If the first format is used, one blank is appended. The second and third formats define the number of
blanks to be appended. If the numeric variable is fractional, the value is obtained by truncation, not
rounding. If the number is less than one, no blanks are appended.
Only the number of blanks that will fit in the variable are appended. eos is set if fewer blanks are
appended than were specified. The form pointer and length pointer are set to point to the last blank
moved. If no blanks are appended, then the form pointer and length pointer are not changed.

Page 171

external

label external

label is required
Flags affected: none
The external statement defines label as an external reference. In other words, label may be found in
another module at execution time. The external statement must precede any references to its label unless
the -x parameter is specified on the compiler command line.

Page 172

File Manipulation Statements

label aimdex charexp
label build charexp
label copy charexp
label create charexp
label encode charexp
label exist charexp
label index charexp
label reformat charexp
label sort charexp

charexp is the source operand
Flags affected: over
Each statement causes the respective DB/C DX utility to be executed with the parameters specified in the
source operand. For information about the DB/C DX utilities, refer to the DB/C DX Utilities chapter.
The over flag is cleared if the operation is successful. The over flag is set if the input file does not exist or
if the command could not complete normally.

Page 173

filepi

label filepi dcon; list
label filepi 0

dcon is a decimal number
list is a list of file, ifile and afile variables

Flags affected: none
The filepi statement limits access to certain data files to one DB/C DX runtime at a time.
The first form of the filepi statement specifies the duration of the lock and a list of files to be locked. The
first operand, dcon, specifies the number of instructions during which the files are to remain locked. The
value of this decimal number may be 2 through 254, inclusive. If the value of the decimal number is 1, the
statement is ignored. The second operand, list, specifies the files to be locked as a list of file, ifile and afile
variables.
If the decimal number specified is non-zero, then other programs are not permitted to execute a filepi on
the specified files. The lock is done on the logical name of the text file associated with the file, ifile or afile
variable. Therefore, each of the file, ifile and afile variables must be open.
For example, assume a program is currently executing a filepi statement or any of the following
statements. The filepi statement has locked all other programs out of a certain file. If another program
requires access to the locked file, then execution of this second program is on hold until the effect of the
filepi has terminated.
The following statements do not count as executing instructions for the filepi locking mechanism: goto,
branch, if, else, endif, for, loop, while, until, repeat, call, perform, and return.
The following statements immediately terminate the effect of a filepi statement: keyin, display, beep,
pause, splopen, splclose, print, release, chain, shutdown, stop, rollout, sqlcode, sqlexec, sqlmsg, wait,
comwait and all other the File Manipulation Statements.
An error results when an attempt is made to lock files with a filepi operation while another filepi is still in
effect.
The second form of the filepi statement is used to cancel all existing file locks. A filepi 0 statement can be
used to unlock the files before the number of instructions specified in the initial filepi statement have
been executed.

Page 174

fill

label fill charvar prep list
label fill charlit prep list

charvar is the source character variable
charlit is the source one-character literal
list is the list of character variables and character array variables

Flags affected: none
The form pointed character of the source or the source one-character literal is moved to all character
positions in the destination. The form pointer of the destination is set to one and the length pointer is set
to the maximum length. If the source form pointer is zero, no changes are made.

Page 175

flagrestore

label flagrestore charexp
flagrest may be used in place of flagrestore
charexp is the source operand

Flags affected: eos, equal, less, over
See also: flagsave
The flagrestore statement restores flag settings from a character variable. The logical string of the source
operand is used to set or clear eos, equal, less, and over.
If the first character in the source operand is a one, then eos is set. If it is a zero, then eos is cleared.
If the second character in the source operand is a one, then equal is set. If it is a zero, then equal is cleared.
If the third character in the source operand is a one, then less is set. If it is a zero, then less is cleared.
If the fourth character is a one, then over is set. If it is a zero, then over is cleared.
If any of the characters has a value other than one or zero, then no change is made to the corresponding
flag. If the source operand is less than four characters long, then only those flags that correspond to the
existing characters are changed.

Page 176

flagsave

label flagsave charvar
charvar is the destination operand

Flags affected: none
See also: flagrestore
The flagsave statement moves the values of eos, equal, less, and over into the destination operand. The
flagsave statement does not affect the flag values; it merely saves them to a variable.
If the eos flag is set, then 1 is moved to the first position of the destination operand. If it is cleared, then 0
is moved.
If the equal flag is set, then 1 is moved to the second position of the destination operand. If it is cleared,
then 0 is moved.
If the less flag is set, then 1 is moved to the third position of the destination operand. If it is cleared, then 0
is moved.
If the over flag is set, then 1 is moved to the fourth position of the destination operand. If it is cleared,
then 0 is moved.
If the maximum length of the destination operand is less than four, then only those flag settings that fit
are saved. The form pointer is set to one and the logical length pointer is set to the number of characters
moved.

Page 177

flusheof

label flusheof file
label flusheof ifile
label flusheof afile

flush may be used in place of flusheof
file is the label of a file declaration
ifile is the label of an ifile declaration
afile is the label of an afile declaration

Flags affected: none
See also: close, open, prepare
The flusheof statement causes the DB/C DX runtime to flush any data written by the program to the disk.
In addition, the flusheof statement causes the operating system to flush it's own buffers for the file. Some
operating systems do not support a function to flush file buffers. In those cases an implicit close and open
takes place. When this occurs, all file and record locks will be released for the file.

Page 178

for, break, continue, repeat

label for numvar prep numexp1 prep numexp2
label for numvar prep numexp1 prep numexp2 prep numexp3
label break
label break if cond
label break if not cond
label break if function-key
label break if not function-key
label break if expression
label break if not expression
label continue
label continue if cond
label continue if not cond
label continue if function-key
label continue if not function-key
label continue if expression
label continue if not expression
label repeat

numvar is the loop variable
numexp1 is the starting value operand
numexp2 is the ending value operand
numexp3 is the increment value operand
cond is one of equal, less, over, eos or greater
expression is an algebraic expression
function-key is one of F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17,

F18, F19, F20, up, down, left, right, insert, delete, home, end, pgup, pgdn, tab, bktab,
esc, or enter

Flags affected: none
See also: loop
Statements between the for and repeat statements are executed zero or more times. The operands of the
for statement control the number of times the statements are executed. The break and continue statements
conditionally control execution of the program lines between the for and repeat statements.
One for statement is required before the break, continue, and repeat statements. One repeat statement is
required after the for, break, and continue statements. The break and continue statements are optional
and may be specified any number of times.
If the increment value operand is not specified, it defaults to one. The loop variable is set to the starting
value before the first iteration through the loop is attempted.
If the increment value is positive and the loop variable is greater than the ending value, then the for/
repeat loop terminates and execution continues at the statement after the repeat statement. If the
increment value is negative and the loop variable is less than the ending value, then the for/repeat loop
terminates and execution continues at the statement after the repeat statement. If neither of these cases is
true, then statement execution continues at the statement after the for statement. When the corresponding
repeat statement is executed, the increment value is added to the loop variable and the termination test is
performed again. Execution continues as described above.
The break statement causes the for/repeat loop to terminate and execution to continue after the repeat
statement. If the break statement is conditional, then this action occurs only if the condition is true.
The continue statement causes execution to continue immediately with the repeat statement. That is, the
loop variable is increased incrementally, the termination test is performed, and program execution
continues accordingly.
for/repeat loops may be nested up to 32 levels.

Page 179

format

label format exp prep charexp prep charvar
exp is the source operand
charexp is the formatting mask
charvar is the destination operand

Flags affected: eos, over
The format statement causes numeric and character data to be reformatted. The formatting mask utilizes
data from the source operand to determine the data stored in the destination.
Data is moved into the destination operand following the rules of the formatting mask. The actual data
that is moved depends on the formatting mask. The contents of the source operand are not changed.
The formatting mask contains special control characters that denote how data is moved to the destination.
The mask can contain any character, but only the control characters affect the movement of data.
Formatting continues as follows: each character in the mask is compared with the control characters. If
the character in the mask is not one of the control characters, then it is moved to the destination
unchanged and no characters from the source are moved. Formatting continues with the next character in
the mask.
The form pointer of the destination is set to one. The length pointer of the destination is set to the last
character moved.
The eos flag is set if the destination is too small to hold all the characters moved. The over flag is set if the
format mask string is erroneous.
The formatting of a character source uses different mask characters than those for the formatting of a
numeric source.
Three control characters are applicable if the source operand is a character variable, literal, or expression:
 A One character is moved from the source.
 ~ One character from the source is ignored.
 \ The following character in the mask is moved to the destination, even if it is a control

character.
Fourteen control characters are applicable if the source operand is a numeric variable, literal, or
expression:
 Z A digit or blank character is moved from the source to the destination.
 9 A character is moved from the source. However, if the character is a blank, it is

converted to a zero.
 , A comma is moved to the destination. However, if no digits have been moved, a

blank is moved instead of a comma.
 & The character following this symbol is moved to the destination, unless no digits

have been moved, in which case a blank is moved to the destination. Thus, &, is the
same as , by itself.

 (This character is moved to the destination if the source value is negative; otherwise, a
blank is moved.

) This character is moved to the destination if the source value is negative; otherwise, a
blank is moved.

 - A minus sign is moved to the destination if the source value is negative; otherwise, a
blank is moved.

 + A plus sign or a minus sign is moved to the destination, depending on whether the
source is positive or negative.

Page 180

 < The character following this symbol replaces all blanks moved from the source,
blanks created by the comma, or blanks created by the lack of a sign (including the
blank created by the closing parenthesis). If the < control character is used in
conjunction with a 9 control character, the < is ignored.

 > The character following this symbol is floated to the left of the first digit moved. If
the > control character is used in conjunction with a 9 control character, the far left
blank will be replaced with the character following the >.

 $ The dollar sign character is floated to the left of the first digit or decimal point
moved. This control character is equivalent to >$.

 ^ The caret symbol is used to define decimal point justification in the field. The
following character is used as a replacement for the decimal point.

 . A period is used to define decimal point justification in the field. This control
character is equivalent to ^. .

 ~ One character from the source is ignored.
 \ The following character in the mask is moved to the destination, even if it is a control

character.

Page 181

fposit

label fposit file, numvar
label fposit ifile, numvar
label fposit afile, numvar

file is the label of a file declaration
ifile is the label of an ifile declaration
afile is the label of an afile declaration
numvar is the destination operand

Flags affected: over
See also: reposit
The fposit statement stores the value of the current file position in the destination operand. If the value to
be stored is too large for the destination variable, the over flag is set.
The fposit instruction is often used with the reposit instruction to restore the current file position to an
earlier value.

Page 182

get

label get queue; list
queue is the queue variable
list is the list of character and numeric variables

Flags affected: over
The get statement moves a message from the beginning of the specified queue into the list of variables. If
there are no messages in the queue, the over flag is set and the variables in the list are cleared and zeroed.

Page 183

getcolor

label getcolor image; numvar
image is the first operand
numvar is the destination operand

Flags affected: over
The color of the dot located at the current graphics draw position is moved to the destination operand.
The number that represents the color is the 24 bit RGB value of the color.
In non-graphical versions of DB/C DX, execution of the getcolor statement results in an error.
If the value of the color is truncated while it is being moved, over is set.

Page 184

getcursor

label getcursor numvar1 prep numvar2
numvar1 is the horizontal position operand
numvar2 is the vertical position operand

Flags affected: over
The position of the cursor with respect to the current subwindow is moved to the operands. The
horizontal position of the cursor is moved to the horizontal position operand. The vertical position of the
cursor is moved to the vertical position operand.
If either position is truncated while it is being moved, the over flag is set.

Page 185

getendkey

label getendkey numvar
numvar is the destination operand

Flags affected: none
See also: keyin, setendkey, clearendkey
The getendkey statement moves the numeric value of the key that caused the most recently completed
keyin statement to terminate to the destination operand. The ending key values are described in the
Keyboard and Display Manipulation Statements section of the DB/C Programming Language General
Information chapter.
If enter is specified as an ending key and if it is the key that terminated the keyin statement, then 256 is
moved to the destination. The value zero is moved to the destination if a keyin timeout occurred or if
keyin continuous was in effect and was the cause of the keyin statement termination.

Page 186

getglobal

label getglobal charexp prep adrvar
charexp contains the name of the global variable
adrvar is the destination address variable

Flags affected: over, less
The getglobal statement moves the address of a global variable into the destination address variable. The
getglobal statement is useful when the global variable was declared in a different module, or when the
global variable was created in a different module using the makeglobal instruction.
The name of the global variable is specified by the first operand. If the variable does not exist, the address
variable is set to invalid and the over flag is set.
The destination operand must be the @ form of the same type of variable as the global variable or it must
be a typeless address variable. If the type of the address variable is not the same type as the global
variable, the less flag is set.

Page 187

getlabel

label getlabel charexp prep lblvar
charexp contains the name of the external label
lblvar is the destination label variable

Flags affected: over
See also: external
The getlabel statement moves the address of an external label into the destination label variable.
The name of the external label is specified by the logical string of the first operand. If the label does not
exist, the label variable is invalid and the over flag is set.

Page 188

getmodules

label getmodules chrarray
chrarray is the destination character array variable

Flags affected: eos, less
See also: loadmod
The getmodules statement moves the names of all loaded modules and instances into the destination
array. Each module/instance combination is moved to an element of the destination array. The first
element of the array will contain the current module and the current instance. All instances for a
particular module will be grouped together as contiguous elements of the array. The first instance for
each module will be the current instance for that module. Each element is stored like this:
module<instance>.
The eos flag is set if a module/instance string is truncated. The less flag is set if there are not enough
elements in the array to hold all the module/instance combinations.

Page 189

getname

label getname variable prep charvar
variable is the source variable
charvar is the destination character variable

Flags affected: eos, over
See also: record, list
The getname statement moves the name of the source variable to the destination if that name is available.
To make a name available, use the with names operand on a list or record statement.
If the name is not available, the over flag is set and the destination form and length pointers are set to
zero. If the destination is not large enough to hold the name of the source variable, the name is truncated
on the right and the eos flag is set.

Page 190

getobject

label getobject adrvar
adrvar is the destination object address variable

Flags affected: none
See also: call, make
The getobject statement moves a pointer to the object variable that defines the instance of the class that
has current runtime scope into the destination variable. If there is no current instance of a class, then the
destination address variable is cleared.

Page 191

getpaperbins

label getpaperbins charaexp, chararray
charaexp is the source operand
chararray is the destination

Flags affected: eos, less, over
The getpaperbins statement moves the names of the paper bins for a printer into the elements of the
destination array. The source operand provides the name of the printer for which the paper bins are made
available.
If the dbcdx.print.destination=client runtime property is set and Smart Client is being used, the list of
paper bins is gotten for the printer on the client computer, not the server.
The over flag is set if the printer name is invalid or doesn't exist. The eos flag is set if any paper bin name
is truncated. The less flag is set if there are not enough elements in the array to hold all the paper bin
names.

Page 192

getpapernames

label getpapernames charaexp, chararray
charaexp is the source operand
chararray is the destination

Flags affected: eos, less, over
The getpapernames statement moves the names of the paper available for a printer into the elements of
the destination array. The source operand provides the name of the printer for which the paper names are
made available.
If the dbcdx.print.destination=client runtime property is set and Smart Client is being used, the list of
paper names is gotten for the printer on the client computer, not the server.
The over flag is set if the printer name is invalid or doesn't exist. The eos flag is set if any paper name is
truncated. The less flag is set if there are not enough elements in the array to hold all the paper names.

Page 193

getparm

label getparm cadrvar
label getparm cadrvar, varvar1
label getparm cadrvar, varvar1, varvar2
label getparm cadrvar, varvar1, varvar2, varvar3
label getparm cadrvar, varvar1, varvar2, varvar3, varvar4
label getparm cadrvar, varvar1, varvar2, varvar3, varvar4, varvar5

cadrvar is the keyword destination operand
varvar1 is the first typeless address variable destination
varvar2 is the second typeless address variable destination
varvar3 is the third typeless address variable destination
varvar4 is the fourth typeless address variable destination
varvar5 is the fifth typeless address variable destination

Flags affected: over
See also: verb, type, cverb
The getparm statement moves the address of the next parameter from the optional parameter list
associated with a user-defined verb into the destination operand(s).
The address of the keyword is put into the keyword destination operand. All alphabetic characters in the
character string that cadrvar points to will have been translated to upper case. If the parameter does not
have a keyword, the address of a character variable with a zero form pointer is put into the keyword
operand.
The address of the variable or literal value of the parameter (if it exists) is put into the first typeless
address variable. The addresses of any additional values are put into the second, third, fourth, and fifth
typeless address variables. Any unused typeless address variables are set to values that will cause the
type operation to return zero.
If a getparm operation is attempted after the last parameter has been retrieved, the over flag is set and all
operands are invalid.

Page 194

getposition

label getposition image; numvar1, numvar2
getpos may be used in place of getposition
image is the first operand
numvar1 is the horizontal position operand
numvar2 is the vertical position operand

Flags affected: over
The getposition statement moves the current graphics draw position to the operands. The horizontal
position is moved to the horizontal position operand. The vertical position is moved to the vertical
position operand.
In non-graphical versions of DB/C DX, execution of the getposition statement results in an error.
If either position is truncated while it is being moved, the over flag is set.

Page 195

getprinters

label getprinters chararray
chararray is the destination

Flags affected: eos, less
The getprinters statement moves the names of the currently available printers into the destination array.
Each printer element of the destination array contains one printer name.
If the dbcdx.print.destination=client runtime property is set and Smart Client is being used, the list of
printers will contain only the printers available on the client not the server.
The eos flag is set if any printer name is truncated. less is set if there are not enough elements in the array
to hold all printer names.

Page 196

getwindow

label getwindow numvar1 prep numvar2 prep numvar3 prep numvar4
numvar1 is the top operand
numvar2 is the bottom operand
numvar3 is the left operand
numvar4 is the right operand

Flags affected: over
The getwindow statement moves the current subwindow size to the operands. The top line number is
moved to numvar1. The bottom line number is moved to numvar2. The left column number is moved to
numvar3. The right column number is moved to numvar4.
If any parameter is truncated while it is being moved, the over flag is set.

Page 197

goto

label goto prog-label
label goto prog-label if cond
label goto prog-label if not cond
label goto prog-label if function-key
label goto prog-label if not function-key
label goto prog-label if expressionfi
label goto prog-label if not expression

prog-label is a program execution label or a program label variable
cond is one of equal, less, over, eos or greater
function-key is one of F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17,

F18,F19, F20, up, down, left, right, insert, delete, home, end, pgup, pgdn, tab, bktab,
esc, or enter

expression is an algebraic expression
Flags affected: none
See also: setendkey
The goto statement causes program execution to continue conditionally or unconditionally at the
statement specified by prog-label. If prog-label is a program execution label, execution will continue at the
statement with that label. If prog-label is a program label variable, execution will continue at the statement
with the label whose value has been most recently assigned to the label variable.
If the first format is used, program execution unconditionally continues at the statement specified by
prog-label. If one of the other formats is used, program execution continues at the statement specified by
prog-label only if the condition tested by an if is true or the condition tested by an if not is false. If a
condition is not met, program execution continues with the statement that follows the goto statement.
The function-key form of the goto statement is only applicable following a keyin statement that was
interrupted when a function key was pressed. Each function-key condition may only be tested once with a
goto, call, or return operation. All function-key conditions are reset after they are checked and at the start
of keyin execution.

Page 198

hide

label hide resource
label hide image

resource is the source operand
image is the source operand

Flags affected: none
See also: show
The resource or image specified as the source operand is removed from view.
In non-graphical versions of DB/C DX, execution of the hide statement with an image variable results in
an error.

Page 199

if, else, endif

label if cond
label if not cond
label if function-key
label if not function-key
label if expression
label if not expression
label else
label else if cond
label else if not cond
label else if function-key
label else if not function-key
label else if expression
label else if not expression
label endif

cond is one of equal, less, over, eos or greater
function-key is one of F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17,

F18,F19, F20, up, down, left, right, insert, delete, home, end, pgup, pgdn, tab, bktab,
esc, or enter

expression is an algebraic expression
Flags affected: none
See also: setendkey
The if, else, and endif statements conditionally control execution of subsequent lines of code. These
operations and the statements enclosed by these operations are called an if-endif construct.
The if statement is used to test whether a condition is true. If the condition is true (that is, if the function
key has been pressed, if the algebraic expression evaluates to a value other than zero, or if the flag is set),
then execution continues with the next statement. Otherwise, execution continues after the else statement
if it exists, or after the endif statement if the else statement does not exist.
The if not statement is used to test whether a condition is false. If the condition is false, then execution
continues with the next statement. Otherwise, execution continues after the else statement if it exists, or
after the endif statement if the else statement does not exist.
The else statement is optional. The else statement causes the program to execute the next statement if the
condition being tested by the previous if statement or if not state ment is not satisfied.
An endif statement is required whenever an if statement is present. The endif statement denotes the end
of the if-endif construct. After the statements in the if construct have been executed, the program
continues execution with the line following the endif statement.
The else if statement is analogous to an else statement immediately followed by an if statement. The else
if not statement is analogous to an else statement immediately followed by an if not statement. The else if
notations are useful when testing for multiple conditions within a single if-endif construct. The else if
notations do not require any additional endif statements.

Page 200

insert

label insert ifile, charvar
label insert afile

ifile is the label of an ifile declaration
afile is the label of an afile declaration
charvar is the key

Flags affected: none
The insert statement adds the specified key to an index file or associative index file without altering the
data file.
The insert operation adds a key to an indexed file without changing the logical records of the data file.
The logical string of charvar is used as the key.
For an index file, the logical string from the character variable is used as the new key to be put into the
index. If duplicates are not allowed (that is, dup is not in the ifile declaration), then the index is searched
for a key that matches the new key. If a match is found, then the duplicate key error occurs. If no match is
found or if duplicates are allowed, then the new key is inserted into the index. The record that is
associated with that key is the last record read or written through any ifile or afile variable.
The insert operation places the key information of the most recently read or written record into the
aimdex of the afile.
For an aimdex file, the field information specified in the aimdex utility parameter list is used to obtain the
key information. The insert statement places this key information into the aimdex file. The record that is
associated with that key is the last record read or written through any file, ifile, or afile variable.

Page 201

keyin

label keyin list
list is a comma delimited list that contains variables, literals, octal and hexadecimal constants, display
control codes, and keyin control codes

Flags affected: varies
See also: display, clearendkey, getendkey, setendkey
The keyin statement accepts input from a keyboard. The keyin statement typically displays the characters
on the screen and alters variables in the program.
When a variable is encountered in the list, the cursor appears at the current cursor position and the
program waits for characters to be typed on the keyboard. Each valid character entered is displayed at the
cursor position. The cursor position is increased incrementally after each character is entered.
Control codes modify the manner in which data is requested and entered into variables.
When a character variable is encountered in the operand list, each character entered from the keyboard is
placed into the variable starting at the first character position and continuing through the maximum
length of the variable. Each character entered is displayed on the screen. The cursor position is increased
incrementally for each character entered. Entry of characters is terminated by pressing the enter key or an
end key. If more characters are entered than will fit in the character variable, only those characters that
will fit are accepted and a beep is sounded. The form pointer of the variable is set to one and the logical
length pointer is set to point to the last character entered before the enter or the end key was pressed.
Blanks are stored after the last character entered up through the physical length of the variable. If no
characters are entered and just the enter key or an end key is pressed, the form pointer of the variable is
set to zero.
When a numeric variable is encountered in the operand list, only characters that comprise a valid DB/C
number may be entered. The number of characters accepted is the total length of the numeric variable
including the decimal point. Only the correct number of digits to the left or right of the decimal point is
allowed to be entered. When the enter key or an end key is pressed, the characters entered are moved to
the numeric variable. The format of the numeric variable is preserved. If any extra characters are entered,
a beep is sounded and the character is ignored. If no characters are entered and just the enter key or an
end key is pressed, the numeric variable is set to zero.
After an active end key other than the enter key is pressed, keyin of the current variable and processing of
the keyin statement are terminated. See setendkey and clearendkey for a description of how to alter the
active end keys. Any variables remaining in the operand list are processed as though the enter key was
pressed for each.
When a literal is encountered in the operand list, the literal value is displayed on the screen starting at the
current cursor position. The cursor position is increased incrementally for each character entered.
When octal or hexadecimal constants are encountered in the operand list, the character represented by
that character code is displayed in the same manner as a single character in a character variable.
If the cancel key is pressed during entry of a keyin variable, all characters typed into the field up to that
point are erased and the cursor is placed at the beginning of the field. If no characters have been typed
into the current field when the cancel key is pressed, only a beep sounds.
If the backspace key is pressed during entry of a keyin variable, the previous character typed into the
field is erased and the cursor is moved left one position. If no characters have been typed into the current
field when the backspace key is pressed, the backspace is ignored.
All display control codes work the same way with a keyin statement except for *+, *-, and *zf. These
three exceptions are discussed in the following sections.
*edit is the edit control code. This control code affects the next variable encountered in the operand list. If
the next variable is a numeric variable, then the variable is displayed and the cursor is positioned at the
first character displayed. If any character other than an ending key is pressed, the field is first cleared;
otherwise, the value in the variable is retained. If the next variable is a character variable, then special

Page 202

editing takes place. First, the value of the variable is displayed. Blanks are displayed for the number of
characters that are between the length pointer of the variable and the maximum length of the variable.
The cursor is positioned at the first character displayed. Characters typed at the keyboard cause the typed
character to be inserted into the field and the cursor moved to the right one position. If *ovsmode is in
effect, the typed character replaces the character at the cursor position. The following keys have special
functions: left, right, back space, and delete. Left and right are non-destructive cursor movement keys.
The cursor is only allowed to move within the field itself. Back space works normally, except all
characters to the right of the character removed move left one character position. The enter key or an end
key completes the keyin. When keyin is finished, the form pointer is set to one and the logical length is set
to the number of characters in the variable. The edit insert/overstrike is controlled by *insmode and
*ovsmode. The dbcdx.keyin.editmode runtime property modifies this action.
*editon is the edit on control code. This control code works exactly like *edit except it remains in effect
until it is cancelled by the *editoff control code.
*editoff is the control code that cancels the effect of the *editon control code.
*insmode causes editing of variables to take place in insert mode. In insert mode, a character typed at the
keyboard is inserted at the current cursor position. All the characters in the field that lie to the right of the
current cursor position are moved to the right one position. This is the default editing mode. This control
code is only applicable if *edit or *editon is in effect.
*ovsmode causes editing of variables to take place in over strike mode. In over strike mode, every
character typed at the keyboard overwrites the character that is at the current cursor position. The
characters to the right of the current cursor position are unchanged. This control code is only applicable if
*edit or *editon is in effect.
*kl=charvar:n is the keyin limited field control code. This control code affects the character variable
designated by charvar. When the *kl control code is in effect, keyin of charvar is conducted using the same
keystrokes as in *edit with character variables. However, the field length on the screen is limited to n
characters, where n is a decimal constant or a numeric variable. Only n characters keyed in will be
displayed on the screen.
*de is the digit entry control code. This control code affects only the next variable encountered in the
operand list. This control code only allows entry of the digits 0 through 9. Typing any other character
causes a beep to sound and the character to be ignored.
*zf is the zero fill control code. This control code affects only the next variable encountered in the
operand list. This control code only applies to character variables. This control code causes all blanks in
the variable to be replaced with zeros.
*jr is the justify right control code. This control code affects only the next variable encountered in the
operand list. This control code only applies to character variables. This control code causes the characters
entered to be right justified in the variable.
*jl is the justify left control code. This control code affects only the next variable encountered in the
operand list. This control code causes the characters entered to be left justified in the variable.
*clickon is the control code that causes a click to sound every time a character is entered. This option is
unavailable on some terminals. This code is canceled by the *clickoff code or by chaining to another
program.
*clickoff is the control code that cancels the action of the *clickon control code.
*eoff is the echo off control code. This control code affects all variables that follow in the operand list.
Nothing is displayed and the cursor is not moved as each character is typed on the keyboard.
*eon is the echo on control code. This control code reverses the action of the *eoff control code and
causes the system to revert to normal display of characters as they are typed.
*eson is the echo secret on control code. This code affects all variables that follow in the operand list. As
each character is typed in the keyboard, an asterisk or a character specified in the *eschar control code is
displayed on the screen instead of the character that was typed.
*esoff is the echo secret off control code. This code cancels the effect of the *eson control code.

Page 203

*eschar=charexp is the echo secret character control code. The form pointed character in charexp is the
character that replaces the asterisk display as described in the *eson control code.
*uc is the upper-case control code. This control code causes the characters typed at the terminal to be
converted to upper-case whether the shift key is pressed or not. This control code is canceled by the *lc,
*it, or *in control codes or by chaining to another program.
*lc is the lower-case control code. This control code causes the characters typed at the terminal to be
converted to lower-case whether the shift key is pressed or not. This control code is canceled by the *uc,
*it, or *in control codes or by chaining to another program.
*it is the invert keyboard to lower-case control code. When this code is in effect, the keyboard is in upper-
case mode. If a character is typed with the shift key pressed, the character is lower-case. Otherwise, the
character is in upper-case. This control code is canceled by the *uc, *lc, or *in control codes, or by
chaining to another program.
*in is the invert to normal control code. This control code cancels the effects of the *it, *uc, and *lc
control codes.
*cl is the clear key ahead buffer control code. This control code discards any keystrokes that have been
typed ahead.
*dv is the display variable control code. This control code affects only the next variable or literal
encountered in the operand list. This control code causes that variable or literal to be displayed as it
would be by the display operation instead of being used as an input variable.
*dcon in a keyin operation is the enter comma control code. This control code causes a comma to be
accepted instead of a decimal point (period) in numeric variables. This control code affects all numeric
variables that follow. It is cancelled by the *dcoff control code or by chaining to another program. It also
affects the operation of the display statement.
*dcoff is the cancel comma control code. This control code cancels the effect of the *dcon control code.
*kcon or *+ in a keyin statement is the keyin continuous control code. This control code affects all
variables that follow in the operand list. The keyin of each variable does not have to be terminated with
the enter key. After the last character is typed into a variable, the system continues the keyin of the next
variable as if the enter key had been pressed.
*kcoff or *- in a keyin statement reverses the action of *kcon. This control code causes the system to
revert to the normal mode of requiring that the enter key be pressed in order to enter typed data into a
variable.
*t, *t=n and *tn are the timeout control codes. These control codes affect keyin of all variables that follow
in the operand list. The n in the *t=n format is a numeric variable or a decimal constant with a value
between 0 and 30000 and which is the timeout interval in seconds. The n in the *tn format is a decimal
constant with a value between 1 and 254, inclusive, and which is the timeout interval in seconds. When
the *t format is specified the timeout interval is two seconds. The timeout action occurs when the time
between two keystrokes during entry of a variable is greater than the specified timeout interval. When
the timeout interval is zero, a timeout occurs unless the characters have already been typed (that is, typed
ahead). The effect of a timeout is analogous to pressing the enter key for the current variable and all
remaining variables in the operand list. The current variable contains any characters already entered and
remaining variables are zeroed or cleared.
*toff or *t255 is the cancel timeout control code. These control codes cancel the timeout feature and revert
to normal data entry with no timeout in effect.
*rv is the retain variable control code. This control code affects only the next variable encountered in the
operand list. If there are no characters entered into the variable when the enter key is pressed, then the
entry is considered to be a null entry. If there were characters entered, then characters are stored into the
variable normally. If there is a null entry, the previous value of the variable is retained instead of being
cleared or set to zero. The eos flag is set with a null entry. If the entry is not null, the eos flag is cleared.
When the *t control code is also in effect for this variable, the less flag is set if a timeout occurred and the
less flag is cleared if a timeout did not occur. If the keyin statement was terminated by the pressing of a
function key, the over flag is set; otherwise, the over flag is cleared.

Page 204

Page 205

lcmove

label lcmove charvar1 prep charvar2
charvar1 is the source operand
charvar2 is the destination operand

Flags affected: eos
The lcmove statement moves the length-pointed character in the source operand to the first character
position in the destination operand. No changes are made to the form pointers or logical length pointers
of either operand. If the logical length pointer of the source is zero, then no move takes place and the eos
flag is set.

Page 206

lenset

label lenset charvar
charvar is the destination operand

Flags affected: none
See also: endset
The lenset statement sets the length pointer of the destination to the same value as its form pointer.

Page 207

link

label link resource prep queue
label link device prep queue

resource is the source operand
device is the source operand
queue is the queue variable

Flags affected: none
The resource or device specified by the source operand is linked to the queue variable. The resource or
device will either provide queue messages or receive queue messages.

Page 208

load

label load var prep numexp prep list
label load charvar prep device
label load image prep device

var is the destination variable
numexp is the index
list is a list of literals, character variables, numeric variables, arrays or list variables
charvar is the destination operand
image is the destination operand
device is the source operand

Flags affected: equal, less, over (both operands numeric); eos (one or both operands character); none
(image and device variables are operands)
See also: move, store
In the first form, the load statement moves one of the variables in the list to the destination. The value of
the index (numexp) determines which member of the list is moved. Each element of an array or list
variable is counted as one variable.
The source is the Nth item from the list where the index defines N. The index is truncated to an integer
value, not rounded. If the value N is less than one or greater than the number of variables in the list, then
the load statement does nothing.
After an item is selected as the source, an implicit move operation is performed as the item is moved to
the destination. Flags are set according to the rules used with the move instruction.
In the second form, the load statement moves text from the source device to the character variable.
In the third form, the load statement moves an image from the source device to the image variable. In
non-graphical versions of DB/C DX, this form of load statement causes a runtime error.

Page 209

loadadr

label loadadr adrvar prep numexp prep list
label loadadr adrvar prep numexp prep lstvar
label loadadr adrvar prep numexp prep array

adrvar is the destination operand
numexp is the index
list is a list of source variables
lstvar is a list variable
array is an array variable

Flags affected: none
The source variables may be any type of variable except a label variable. The index (numexp), used to
specify the source variables, is truncated to an integer value, not rounded. If the index is less than one or
greater than the number of variables in the list, then the loadadr operation does nothing.
If the first format is used, the loadadr statement moves the address of a specified variable from the list of
variables to the destination. The destination operand (adrvar) must be the @ form of the selected variable
or a typeless address variable. The value of the index (numexp) determines which variable in the list is the
destination. A list variable or an array counts as one variable and must respectively have a list @ or an
array @ destination variable (adrvar).
If the second or third format is used, the loadadr statement moves the address of a specified variable
within the given list or array variable (lstvar or array) to the destination. The value of the index (numexp)
determines which variable within the given list or which element within the given array is specified. The
destination operand must be the @ form of the selected variable within the list/array or a var @ variable.

Page 210

loadlabel

label loadlabel lblvar prep numexp prep list
lblvar is the destination operand
numexp is the index
list is a list of program labels and label variables

Flags affected: none
See also: movelabel, movelv, movevl, storelabel
The loadlabel statement moves one of the entries from the list to the destination label variable. The value
of the index determines which member of the list is moved to the destination variable. The source is the
Nth program label or variable from the list where the index defines N. The index is truncated to an integer
value, not rounded. If N is less than one or greater than the number of items in the list, then loadlabel
does nothing.

Page 211

loadmod

label loadmod charexp
charexp is the source operand

Flags affected: none
See also: chain
The loadmod statement loads a file as a secondary program module. If the source operand is a character
variable, the logical string is used as the file name. If the file is not found or is otherwise invalid, an error
occurs. The secondary module remains loaded until a chain operation executes.
If the logical string of the source operand terminates with <name>, then name specifies the secondary
module instance that will be made current. <name> is not part of the file name that is loaded. If the same
module, but a different instance, has previously been loaded, then a new copy of the data area is created.
If the same module, same instance, has previously been loaded, then the second instance is made current.
Module instance names must be eight characters or less.
If the logical string contains < > or does not contain <name>, then the module being loaded or made
current is called the unnamed instance of a secondary module. Both named and the unnamed instances of
a secondary module may exist at the same time.

Page 212

loadparm

label loadparm numvar prep cadrvar
label loadparm numvar prep cadrvar prep varvar1
label loadparm numvar prep cadrvar prep varvar1, varvar2
label loadparm numvar prep cadrvar prep varvar1, varvar2, varvar3
label loadparm numvar prep cadrvar prep varvar1, varvar2, varvar3, varvar4
label loadparm numvar prep cadrvar prep varvar1, varvar2, varvar3, varvar4, varvar5

numvar is the index
cadrvar is the keyword destination operand
varvar1 is the first typeless address variable destination
varvar2 is the second typeless address variable destination
varvar3 is the third typeless address variable destination
varvar4 is the fourth typeless address variable destination
varvar5 is the fifth typeless address variable destination

Flags affected: over
See also: getparm, resetparm, verb, cverb
The loadparm statement performs the getparm operation from the Nth optional parameter, where the
index (numvar) defines N. The index is truncated to an integer value, not rounded. If the value N is less
than one or greater than the number of optional parameters, the over flag is set and all destination
operands are invalid.

Page 213

loop, break, while, until, continue, repeat

label loop
label break
label break if cond
label break if not cond
label break if function-key
label break if not function-key
label break if expression
label break if not expression
label while cond
label while not cond
label while function-key
label while not function-key
label while expression
label while not expression
label continue
label continue if cond
label continue if not cond
label continue if function-key
label continue if not function-key
label continue if expression
label continue if not expression
label until cond
label until not cond
label until function-key
label until not function-key
label until expression
label until not expression
label repeat

The until and while statements may be combined with the repeat statement on one program line.
The repeat statement is positioned first and the until or while statement follows.

The until and while statements may be combined with the loop statement on one program line.
The loop statement is positioned first and the until or while statement follows.

cond is one of equal, less, over, eos, or greater
function-key is one of F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17,

F18,F19, F20, up, down, left, right, insert, delete, home, end, pgup, pgdn, tab, bktab,
esc, or enter

expression is an algebraic expression
Flags affected: none
See also: for
The break, continue, while, and until statements conditionally control execution of the program lines
between loop and repeat statements.
The loop statement defines the beginning of the construct. Each loop statement must have a correspond-
ing repeat statement.
When a loop statement is encountered, execution of the following program lines continues until a repeat
statement is encountered. Then execution continues at the statement following the loop statement.
The break and continue instructions are optional. Any number of break and continue statements can be
placed between the loop and repeat statements. If the expression following break is true, then execution
continues at the statement following the repeat statement. If the expression following continue is true,
then execution continues at the statement following the loop statement.
The until and while instructions are optional. Any number of until and while statements can be placed
between the loop and repeat statements. The until statement functions in the same way as the break

Page 214

statement. The while statement functions in the same way as until, except the condition testing is
reversed (that is, if the expression following the while is false, then execution continues at the statement
following the repeat statement).
The until and while statements may be combined with the loop statement on one line. The until and
while statements may also be combined with the repeat statement on one line. The until and while
statements will function in the same manner as when they are freestanding statements.
loop/repeat constructs may be nested up to 32 levels.

Page 215

make

label make objvar prep class
label make objvar prep class prep list

objvar is the object variable
class is the class name
list is a list of variables, literals, and expressions

Flags affected: none
See also: call, destroy
The make statement instantiates the object variable as an object of the class specified by the class operand.
This process causes a new set of data variables of the class and all ancestor classes to come into existence.
These variables are used by methods that are called using the object variable.
If there is a make routine specified for the class or for any ancestor of the class, then each of those make
routines are called successively. The deepest ancestor make routine is called first and the rest of the make
routines are called in order of inheritance with the make routine of class called last. If the prep list form of
the make routine is specified, then the variables, literals and expressions of the list are passed as
parameters to each of the make routines. If any of the make routines can not be found, then an E 562 error
occurs.

Page 216

makeglobal

label makeglobal charexp prep adrvar
charexp is the name of a global variable
adrvar is the destination address variable

Flags affected: less
See also: getglobal
The makeglobal statement dynamically creates a global variable and moves its address to the destination
address variable.
The first operand specifies the name and type of the global variable. The logical string of the first operand
is of the form:
 name:type size

name is the 1 to 31-character variable name.
type is C, N, D, R, I,or O.

C means create a character variable. N means create a numeric variable. D means create a device variable.
R means create a resource variable. I means create an image variable. O means create an object variable.
size is specified only if type is C, N, or I. For type C, size must be an integer value from 1 to 65500. For
type N, size must be either n or n.m where n is the size to the left of the decimal point and m is the size to
the right of the decimal point. For type I, the size must be either h,v or h,v,c where h is the horizontal
size, v is the vertical size and c, if specified, is the number of color bits per pixel.
For type C and type N, size may also contain an array specification which follows the variable size
definition. The array specification is of the form [n], [n,n], or [n,n,n].
The destination operand must be the @ form of the same type of variable as the global variable or it must
be a typeless address variable. The less flag is set if the type is invalid, the size is invalid, or if the type of
the address variable is not the same as the global variable.

Page 217

makevar

label makevar charexp prep adrvar
charexp defines a local unnamed variable
adrvar is the destination address variable

Flags affected: less
The makevar statement dynamically creates a local unnamed variable and moves its address to the
destination address variable. The variable is contained in the current instance of the current module. It
will be destroyed when the current instance is destroyed with an unload statement or by the chain
statement.

The logical string of the first operand is of the form:
 type size

type is C, N, D, R, I,or O.
C means create a character variable. N means create a numeric variable. D means create a device variable.
R means create a resource variable. I means create an image variable. O means create an object variable.
size is specified only if type is C, N, or I. For type C, size must be an integer value from 1 to 65500. For
type N, size must be either n or n.m where n is the size to the left of the decimal point and m is the size to
the right of the decimal point. For type I, the size must be either h,v or h,v,c where h is the horizontal
size, v is the vertical size and c, if specified, is the number of color bits per pixel.
For type C and type N, size may also contain an array specification which follows the variable size
definition. The array specification is of the form [n], [n,n], or [n,n,n].
The destination operand must be the @ form of the same type of variable as the local unnamed variable or
it must be a typeless address variable. The less flag is set if the type is invalid, the size is invalid, or if the
type of the address variable is not the same as the local unnamed variable.

Page 218

match

label match charexp prep charvar
charexp is the source operand
charvar is the destination operand

Flags affected: equal, less, eos
The match statement compares two character strings. The logical string of the source is compared with
the logical string of the destination on a character-by-character basis. The comparison continues until one
of the logical strings is exhausted or until the two characters being compared do not match. The operands
remain unchanged.
If all characters match, equal is set and the lengths of the source and destination strings are compared. If
the source string is longer, less is set.
If any of the characters do not match, equal is cleared and the values of the mismatched characters are
compared. If the character from the source has a higher value, less is set.
The less flag has two different meanings, depending on the setting of equal. If equal is set, then less
represents the comparative lengths of the two operands. If equal is cleared, then less represents the
comparative character values of the two operands.
If the form pointer of either source or destination is zero, eos is set and no comparison is made.

Page 219

Miscellaneous Arithmetic Statements

label abs numexp1 prep numvar1
label abs numexp1 giving numvar1
label arccos numexp1 prep numvar1
label arccos numexp1 giving numvar1
label arcsin numexp1 prep numvar1
label arcsin numexp1 giving numvar1
label arctan numexp1 prep numvar1
label arctan numexp1 giving numvar1
label cos numexp1 prep numvar1
label cos numexp1 giving numvar1
label exp numexp1 prep numvar1
label exp numexp1 giving numvar1
label log numexp1 prep numvar1
label log numexp1 giving numvar1
label log10 numexp1 prep numvar1
label log10 numexp1 giving numvar1
label power numexp1 prep numexp2, numvar1
label power numexp1 prep numexp2 giving numvar1
label sin numexp1 prep numvar1
label sin numexp1 giving numvar1
label sqrt numexp1 prep numvar1
label sqrt numexp1 giving numvar1
label tan numexp1 prep numvar1
label tan numexp1 giving numvar1

numexp1 is the source operand
numexp2 is the second source operand
numvar1 is the destination operand

Flags affected: equal, less, over
For the trigonometric functions, the specified operation is performed on the source operand and the
result is placed in the destination operand. The value of the source operand is in radians.
For the exponential functions, the specified operation is performed on the source operand and the result
is placed into the destination operand.
For the power statement, the first source operand is raised to the power of the second source operand,
and the result is placed into the destination operand.

Page 220

mod

label mod numexp1 prep numvar1
label mod numexp1 prep numexp2 giving numvar1

numexp1 is the first source operand
numexp2 is the second source operand
numvar1 is the destination operand

Flags affected: equal, less, over
If the first format is used, then the absolute value of the destination operand is divided by the absolute
value of the source operand. The integer remainder is placed in the destination operand.
If the second format is used, then the absolute value of the second source operand is divided by the
absolute value of the first source operand. The integer remainder is placed in the destination operand.
If either the first or second operand is fractional, the value is obtained by truncation, not rounding.

Page 221

move

label move exp prep list
label move exp prep lstvar
label move exp prep array
label move array1 prep array2
label move lstvar1 prep lstvar2

exp is the source operand
list is the destination list of variables and arrays
lstvar is the destination list variable
array is the destination array variable
array1 is the source character or numeric array variable
array2 is the destination character or numeric array variable
lstvar1 is the source list variable
lstvar2 is the destination list variable

Flags affected: equal, less, over, eos (both operands numeric); eos (one or both operands character or both
operands list variables)
The move statement transfers the contents of the source operand to each destination variable.
The destination list may consist of character variables or numeric variables. Numeric and character
variables may not be mixed in the destination list.
If the first format is used, then the source operand is moved to each variable in the destination list. If an
expression is the source, then the result of the evaluation of the expression is moved to each variable in
the list.
If the second or third format is used, then the source operand is moved to each variable in the destination
list or the destination array.
If the fourth format is used, the arrays must be exactly the same size (both in number of dimensions and
in number of elements in each dimension). Each element of the source array is moved to the
corresponding element in each destination array.
If the fifth format is used, then each individual variable from the source list is moved to the correspond-
ing variable in the destination list. Any variable other than a numeric or character variable is ignored.
Nested lists are expanded. Arrays are treated as a single variable. If any character destination variable
value is truncated, eos is set.
If a destination variable is the same as the source variable, then the move occurs as if the variables were
not the same variables.
For character destination variables, the characters in the logical string of the source are moved one at a
time. Numeric data that is to be moved to character destination variables is treated as logical strings of
characters. The characters are placed in the destination character variable starting in the first physical
position. The destination form pointer is set to one and the logical length pointer is set to the number of
characters moved. The eos flag is set if the logical string of the source will not fit into the destination
variable. In this case, as many characters that will fit into the destination variable are moved.
If the source is a character variable whose form pointer is zero and the destination is a character variable,
then the destination form pointer is set to zero and eos is cleared.
If source and destination are numeric, the source is rounded to fit each destination variable before being
moved. equal, less, and over are set just as if an arithmetic operation took place.
If the source is a character variable and the destination is numeric, the format of the source must be a
valid DB/C number. If the source does not conform to the rules defining valid numeric data, nothing is
moved and eos is set. If the source is a valid number, it is rounded to fit each destination variable before
being moved. If any significant digits or the minus sign is lost by truncation, the eos flag is set. Otherwise
the eos flag is cleared. If the source logical string is null, the eos flag is cleared and no change is made to
the destination. The equal, less, and over flags are not affected.

Page 222

moveadr

label moveadr var prep adrvar
label moveadr charlit prep adrvar

var is the source operand
adrvar is the destination operand
charlit is the source operand

Flags affected: none
See also: loadadr, storeadr
The address of the source variable is moved into the destination.
In the first form, the source operand may be any type of variable except a label variable. The destination
operand must be the @ form of the same type of variable as the source or it must be a typeless address
variable.
In the second form, the source operand is a character literal. The destination operand must be a character
address variable or it must be a typeless address variable.

Page 223

movefptr

label movefptr charvar prep numvar
charvar is the source operand
numvar is the destination operand

Flags affected: equal, over
The movefptr statement determines the value of the form pointer. The value of the form pointer in the
source operand is moved to the destination operand. If the value of the pointer is zero, equal is set. If the
value of the form pointer is truncated while being moved to the destination variable, over is set.

Page 224

movelabel

label movelabel lblvar1 prep lblvar2
label movelabel prog-label prep lblvar2

lblvar1 is the source label variable
prog-label is the source program label
lblvar2 is the destination label variable

Flags affected: none
See also: loadlabel, movelv, movevl, storelabel
The address of the program execution label referred to in the source operand is moved to the destination
label variable.

Page 225

movelength

label movelength var prep numvar
var is the source operand
numvar is the destination

Flags affected: equal, over
The maximum length (possibly changed by sformat or nformat) of the source operand is moved to the
destination. The source operand may be a character or numeric variable. If the value moved is zero, equal
is set. If the maximum length value is truncated while being moved to the destination numeric variable,
over is set.

Page 226

movelptr

label movelptr charvar prep numvar
charvar is the source operand
numvar is the destination operand

Flags affected: equal, over
The movelptr statement determines the value of the length pointer. The value of the length pointer in the
source operand is moved to the destination operand. If the value of the pointer is zero, equal is set. If the
value of the length pointer is truncated while being moved to the destination variable, over is set.

Page 227

movelv

label movelv lblvar prep varvar
label movelv prog-label prep varvar

lblvar is the source label variable
prog-label is the source program label
varvar is the destination variable

Flags affected: none
See also: movelabel, movevl
The address of the program execution label referred to by the source operand is moved to the destination
variable. The destination variable must be a typeless (var) address variable.

Page 228

movesize

label movesize var prep numvar
var is the source operand
numvar is the destination variable

Flags affected: equal, over
If the source operand is a character variable, the logical length of the source character variable is moved
to the destination. If the value moved is zero, the equal flag is set. If the logical length value is truncated
while being moved to the destination numeric variable, the over flag is set. If the source operand is a
numeric variable, the number of digits to the left side of the decimal point is left-side and the number
of digits after the decimal point is right-side. If there is no decimal point, right-side is zero. If the number
of digits to the right of the decimal point is greater than nine, then right-side is set to 9. The value
right-side.left-side is moved to the destination. If the value is truncated when it is moved, the over flag is
set. The equal flag is always cleared.

Page 229

movevl

label movevl varvar prep lblvar
varvar is the source operand
lblvar is the destination variable

Flags affected: none
See also: movelabel, movelv
The source variable must be a typeless (var) address variable that contains the address of a program
execution label. This address is moved to the destination label variable.

Page 230

multiply

label multiply numexp1 prep numvar
label multiply numexp1 prep numexp2 giving numvar
label multiply numexp1 prep numarray3
label multiply numarray1 prep numvar
label multiply numarray1 prep numarray3
label multiply numarray1 prep numarray2 giving numarray3

mult may be used in place of multiply
numexp1 is the first source operand
numexp2 is the second source operand
numvar is the destination operand
numarray1 is the first source operand
numarray2 is the second source operand
numarray3 is the destination operand

Flags affected: equal, less, over
If the first format is used, then the source operand is multiplied by the destination operand, and the result
is placed in the destination operand.
If the second format is used, then the first source operand is multiplied by the second source operand,
and the result is placed in the destination operand.
If the third format is used, the source operand is multiplied by each element of the destination operand.
If the fourth format is used, each element of the source array is multiplied together by the destination
operand. The result is placed in the destination operand.
If the fifth format is used, each element of the source array is multiplied by the corresponding element in
the destination array.
If the sixth format is used, each element of the first operand array is multiplied by the corresponding
element of the second source operand, and the result is placed in the corresponding element of the
destination array.
Rounding takes place when the intermediate result is moved to the destination.

Page 231

nformat

label noformat numvar1 prep dcon1 prep dcon2
label noformat numvar1 prep dcon1 prep numvar3
label noformat numvar1 prep numvar2 prep dcon2
label noformat numvar1 prep numvar2 prep numvar3
label noformat numarray prep dcon1 prep dcon2
label noformat numarray prep dcon1 prep numvar3
label noformat numarray prep numvar2 prep dcon2
label noformat numarray prep numvar2 prep numvar3

numvar1 is the destination operand
numarray is the destination operand
dcon1 is the new left of decimal point size
dcon2 is the new right of decimal point size
numvar2 contains the new left of decimal point size
numvar3 contains the new right of decimal point size

Flags affected: over
The nformat statement changes the physical length of a numeric variable or of all elements in a numeric
array.
The size of the destination numeric variable is changed to L.R where L is the new left of decimal point
size and R is the new right of decimal point size. If a numeric variable is used to specify the size, the
value is obtained by truncation, not rounding.
The new total size of the variable cannot be greater than the original declared total size of the variable
when compiled. If the new size would be greater than the declared size, the over flag is set and no
changes occur.
After the destination variable has been sized, it is set to zero.

Page 232

noeject

label noeject

Flags affected: none
The noeject statement inhibits inclusion of the trailing form feeds in print spool files.

Page 233

noreturn

label noreturn

Flags affected: over
See also: call, return
If the return stack is not empty, noreturn discards the return address on the top of the return stack and
sets the over flag to false. If the return stack is empty, the over flag is set to true. In both cases, execution
continues with the next statement. If a make or destroy routine is currently executing and the return
address to exit the class method is on the top of the return stack, the noreturn statement is ignored and
the over flag is set.

Page 234

not

label not charexp prep charvar
label not hexcon prep charvar
label not numexp prep numvar

charexp is the source operand
hexcon is the source operand
numexp is the source operand
charvar is the destination operand
numvar is the destination operand

Flags affected: equal, eos
For the first and second formats of the not statement, the bitwise not operation is performed on the form
pointed character of the source operand. The result is stored in the form pointed position of the
destination operand. If a decimal, hexadecimal, or octal constant is used as an operand, the character
represented by that character code is used.
If the result is binary zero, the equal flag is set. If either string is null, the eos flag is set and no changes are
made.
For the third format of the not statement, the source operand is converted to a 32 bit integer and the not
operation is performed on that value. The result is moved to the destination operand. If the result is zero,
equal is set. Otherwise, equal is cleared.
The result of the not operation is determined by manipulating the bits in the source operand:

NOT 0 evaluates to 1
NOT 1 evaluates to 0

Page 235

open

label open file, charexp1
label open file, charexp1, list
label open ifile, charexp1
label open ifile, charexp1, list
label open afile, charexp1
label open afile, charexp1, list
label open resource, charexp2
label open device, charexp2

resource is the resource variable
device is the device variable
charexp1 is the variable, literal, or character expression that contains the file name
charexp2 is the name operand
file is the label of a file declaration
ifile is the label of an ifile declaration
afile is the label of an afile declaration
list is the comma delimited list of open options

Flags affected: none
See also: close
In the first six forms, the open statement logically connects an operating system file or files with the file,
ifile, or afile variable in a DB/C program.
If the second operand is a character variable, the logical string is used. The file name in the second
operand must be a standard DB/C file name or a valid file name specific to the operating system. If an
extension is not specified, .txt is assumed for a file declaration, .isi is assumed for an ifile declaration,
and .aim is assumed for an afile declaration. If the file does not exist or can not be accessed because of
security considerations, an error occurs. To open a file, ifile, or afile that is already open, an implicit close
is done before the open.
In the last two forms of the open statement, the resource or device specified by the name operand is
logically connected to the resource or device variable.
The operand list may contain one of these sharing modes: share, read, or exclusive. If none is specified,
share is the default.
Any number of programs may have a file opened in share mode. An error will occur if a share mode open
is attempted when the file is already opened in read or exclusive mode. In share mode, no input or output
buffering is done. share mode performance is slower than read or exclusive performance.
Any number of programs may have a file open in read mode. An error will occur if a read mode open is
attempted when the file is already opened in share or exclusive mode. No file writes or updates are
allowed in read mode. File input is buffered, so performance will usually be better with read mode input
than with share mode input.
Only one program may have a file open in exclusive mode. File input and output is buffered, so
performance is faster than for files opened in share or read modes.
The operand list may contain one of these record lock options: lockmanual or lockauto. If neither is
specified, lockmanual is the default. If lockauto is in effect, then each read statement is implicitly
converted to a locked read statement. If lockmanual is in effect, then the record locking form of the read
statement must be specified to lock a record (for example: readlk).
The operand list may contain one of these record lock options: multiple or single. If neither is specified,
multiple is the default. If single is in effect, then any attempt to lock a second record through this file,
ifile, or afile variable will cause the previously locked record to be unlocked. If multiple is in effect, then
any number of records may be locked concurrently.
The operand list may contain one of these record lock options: wait or nowait. If neither is specified, wait
is the default. If nowait is in effect, then any attempt to lock a record that is already locked will cause the

Page 236

read statement to return immediately and to set the less flag. If wait is in effect, all locking read
statements will wait for a record to be avail able before returning.
The operand list may contain a character variable or literal if the open is for an afile variable. This option
specifies the alternate match character. The first character in the logical string is the new match character.
The alternate match character may also be specified by the option match=charvar or match=charlit. The
form pointed character of the variable or literal specifies the new match character.
If none of these options are specified or if the logical string is null, then the match character is the
character that was specified in the aimdex parameter list. If the match character was not specified there, it
defaults to a question mark (?).
If the operating system has no available file handles or the dbcdx.file.openlimit runtime property value
would be exceeded, then a non-exclusively opened file that does not have an active filepi or record lock
will be physically closed. The file will remain logically open and will be physically reopened on the first
I/O instruction for the corresponding file declarations. Exceeding either the operating system limit or the
dbcdx.file.openlimit could allow another user to open the physically closed file in a non-compatible
mode.

Page 237

or

label or charexp prep charvar
label or hexcon prep charvar
label or numexp prep numvar

charexp is the source operand
numexp is the source operand
charvar is the destination operand
numvar is the destination operand

Flags affected: equal, eos
See also: and, not, xor, rotate
For the first and second formats of the or statement, the bitwise or operation is performed on the form
pointed characters of the source and destination operands. The result is stored in the form pointed
position of the destination operand. If a decimal, hexadecimal, or octal constant is used as an operand, the
character represented by that character code is used. If the result is binary zero, the equal flag is set. If
either string is null, the eos flag is set and no changes are made.
For the third format of the or statement, the source and destination operands are converted to 32 bit
integers and the or operation is performed. The result is moved to the destination operand. If the result is
zero, equal is set. Otherwise, equal is cleared.
The result of the or operation is determined by comparing the bits in each operand:

0 OR 0 evaluates to 0
0 OR 1 evaluates to 1
1 OR 0 evaluates to 1
1 OR 1 evaluates to 1

Page 238

pack

label pack charvar prep list
charvar is the destination operand
list is a list of character and numeric variables, literals, arrays, and list variables

Flags affected: eos
The pack statement combines two or more strings into a single variable. The logical strings of each entry
in the list are appended together and moved to the destination operand. If the resulting string is too large
to fit into the destination operand, the string is truncated and the eos flag is set.
If the form pointer of a variable in the list is zero, that variable is ignored. If every variable in the list has a
form pointer with a value of zero, then the form pointer and the logical length pointer of the destination
are also set to zero. Otherwise, the form pointer of the destination variable is set to one and the length
pointer is set to point to the last character moved. If the destination operand also appears in the list of
source variables, the results are undefined.

Page 239

packlen

label packlen charvar prep list
charvar is the destination operand
list is a list of character and numeric variables, literals, arrays, and list variables

Flags affected: eos
The packlen statement combines two or more variables or literals into a single variable. The values of
each of the variables in the list is appended together and stored in the destination, including variables
nested inside list variables and all elements of arrays. If the resulting string is too large to fit into the
destination operand, the string is truncated and the eos flag is set.
All characters from literals and numeric variables are appended.
For character variables, characters are appended starting with the first character in the variable through
the character pointed to by the length pointer. Blanks are appended for each character position after the
length pointer through the maximum length of the variable. If the form pointer of the variable is zero,
then blanks are appended for each character position through the maximum length of the variable.
The form pointer of the destination operand is set to one and the length pointer is set to point to the last
character moved. If the destination operand also appears in the list of source variables, the results are
undefined.

Page 240

pause

label pause numexp
numexp is the length of time in seconds

Flags affected: none
The pause statement suspends execution of a program for the number of seconds specified in the
operand. The value of numexp may be fractional.

Page 241

perform

label perform numvar prep list
numvar is the index
list is a comma delimited list of program execution labels and program label variables

Flags affected: none
See also: call, return, branch
The perform statement causes program execution to continue with one of the entries in list based on the
value of the index. Program execution continues at the statement specified by the Nth label in the list. N is
determined by converting the index to an integer value.
The specified label must be part of a subroutine so that a return can be made to the statement which
follows the perform instruction. The address of the statement following the perform statement is put on
the return stack.
If the index is fractional, the fraction is truncated, not rounded. If the resulting integer is less than one or
greater than the number of entries in the list, then no perform takes place and execution continues with
the statement immediately following the perform instruction.

Page 242

ploadmod

label ploadmod charexp
charexp is the source operand

Flags affected: none
See also: loadmod
The ploadmod statement loads a file as a secondary program module. If the source operand is a character
variable, the logical string is used as the file name. If the file is not found or is otherwise invalid, an error
occurs.
The ploadmod statement functions in the same way as loadmod except that the module loaded by
ploadmod is permanently loaded. The ploadmod statement performs the same action as the
dbcdx.preload runtime property.

Page 243

popreturn

label popreturn lblvar
lblvar is the destination label variable

Flags affected: over
See also: call, noreturn, pushreturn, return
The popreturn statement causes the value of a program label to be removed from the top of the return
stack and to be stored in the destination label variable. This decreases the number of entries in the return
stack by one.
If there are no entries on the return stack before this statement executes, the over flag is set and the
destination label variable is cleared. If a make or destroy routine is currently executing and the return
address to exit the class method is on the top of the return stack, the popreturn statement clears the
destination label variable and the over flag is set. Otherwise, the over flag is cleared.

Page 244

prepare

label prepare file, charexp1
label prepare file, charexp1, mode
label prepare file, charexp1, charexp2
label prepare ifile, charexp1
label prepare ifile, charexp1, charexp2
label prepare afile, charexp1, charexp2, key-info
label prepare afile, charexp1, key-info
label prepare device, charexp3
label prepare resource, charexp3

prep may be used in place of prepare
file is the label of a file declaration
ifile is the label of an ifile declaration
charexp1 is the variable, literal, or expression that contains the file name
mode is the prepare mode
charexp2 is the variable, literal, or expression that contains the data file name
key-info is a list of parameters that specify the key information
device is the device variable
resource is the resource variable
charexp3 contains the keywords and parameters

Flags affected: none
See also: open
In the first seven forms, the prepare statement is used to create a new file or to erase the contents of an
existing file. The prepare statement logically connects an operating system file or files with the file, ifile,
or afile variable in the DB/C program.
The prepare statement causes the file or files to be opened in exclusive mode. The same considerations
apply as with an open operation in exclusive mode.
In the second form, the mode must be either create or prepare. create mode causes an error to occur when
an attempt is made to prepare a file that already exists. If the mode is prepare, or if any of the other six
forms is used, then an empty file(s) is created if it does not exist and is made empty if it does exist.
If the third form is specified, and the file type is native the logical string of charexp2 is passed as the
second argument to the nioprep function. If the file type is not native, charexp2 is ignored.
If the first, second, or third form is used, only a data file is prepared. The logical string of charexp1
specifies the data file name. If an extension is not specified, .txt is assumed.
If the fourth or fifth form is specified, a data file and an index file are prepared. The logical string of
charexp1 specifies the index file name. If an extension is not specified, .isi is assumed. If charexp2 is not
specified, then the data file name defaults to the index file name with an extension of .txt. If charexp2 is
specified, then its logical string is the data file name. If the extension is not specified, the default is .txt.
If the sixth or seventh form is specified, a data file and an associative index file are prepared. The logical
string of charexp1 specifies the associative index file name. If an extension is not specified, .aim is
assumed. If charexp2 is not specified, then the data file name defaults to the associative index file name
with an extension of .txt. If charexp2 is specified, then its logical string is the data file name. If the
extension is not specified, the default is .txt.
The key-info may include these parameters: keys=charexp, match=charexp, and/or case=charexp.
The keys=charexp parameter is required. The logical string of the keys parameter specifies the key
information. The key information consists of one or more comma delimited key position specifications. A
key position specification is either a single positive number or two positive numbers separated by a
hyphen. If the two-number form is used, the first number must be less than or equal to the second
number. A key position specification defines the character position(s) of each of the associative index keys
within a record. The first key position specification corresponds to the first key; the second key position

Page 245

specification corresponds to the second key, etc. The key position specification can be immediately
preceded by a letter X which indicates an excluded key field. An excluded key field is used to match key
data and record fields, but is not used to generate key information for the associative index. The key
information must have at least one key position specification which is not excluded.
The form pointed character of the case=charexp parameter specifies the key type specification. The key
type specification may be either a letter u representing case insensitive or a letter s representing case
sensitive. If the case parameter is not specified, u is the default.
The form pointed character of the match=charexp parameter specifies the universal match character. If the
match parameter is not specified, the universal match character defaults to the question mark character
(?).
In the last two forms, the prepare statement creates and opens a device or resource.
If the operating system has no available file handles or the dbcdx.file.openlimit runtime property would
be exceeded, then a non-exclusively opened file that does not have an active filepi or record lock will be
physically closed. The file will remain logically open and will be physically reopened on the first I/O
instruction for the corresponding file declarations. Exceeding either the operating system limit or the
dbcdx.file.openlimit runtime property could allow another user to open the physically closed file in a
non-compatible mode.

Page 246

print

label print list
label print pfile; list

list is a comma delimited list of character variables, numeric variables, image variables, list variables,
arrays, literals, octal or hexadecimal constants, and print control codes

pfile is the label of a pfile declaration
Flags affected: none
See also: splopen, splopt, splclose, format
The print statement prints or spools data. The operand list consists of variables, literals, and * control
codes.
The print position defines where in the print line the characters are printed on the printer or in the spool
file. The print position starts at position one (the far left character position) for each line. After variables
and literals are printed, the new print position is immediately to the right of the last character printed.
When a character variable is in the operand list, characters are printed from the first physical character
through the character pointed to by the length pointer. A blank is then printed for each character position
after the length pointer through the maximum length of the variable. If the form pointer of the variable is
zero, the field is considered cleared and only blanks are printed up to the maximum length of the string.
When a numeric variable or literal is in the operand list, all characters are printed starting with the first
character.
When an image variable is in the operand list, its contents are printed when using the graphical version
of DB/C DX. The image variable is ignored in the non-graphical versions unless one of the following
SPLOPEN options was specified: L=PS, L=PCL, or L=PDF. Only one colorbit images are supported when
using L=PCL.
*f or *f=n is the form feed control code. The *f control code causes the printer to skip to top of the next
page and the print position to be set to one. n is an equate, decimal constant, or numeric variable that
represents the number of pages to feed. If n is equal to zero, the control code is ignored.
*c or *c=n is the carriage return control code. This control code causes the print position to be set to one
in the current line. n is an equate, decimal constant, or numeric variable. If n is equal to zero, the control
code is ignored. Otherwise, n has no effect on the functioning of the control code.
*l or *l=n is the line feed control code. The *l control code causes the printer to advance to the next line.
The print position is unchanged. n is an equate, decimal constant, or numeric variable that represents the
number of lines that the printer will advance. If n is equal to zero, the control code is ignored.
*n or *n=n is the next line control codes. The *n control code causes the printer to ad vance to the
beginning of the next line. n is an equate, decimal constant, or numeric variable that represents the
number of lines to advance. If n is not specified, it defaults to one. If n is equal to zero, the control code is
ignored.
*zf is the zero fill control code. This control code applies only to the next variable in the operand list. If
the next variable is a numeric variable, then blank characters in the variable are printed as zeros.
Additionally, if the variable is negative, the minus sign is printed in the first character position.
*zs is the zero suppress control code. This control code affects only the next variable in the operand list. If
the next variable is a numeric variable with a zero value, blanks are printed for each character position of
the numeric variable (including the decimal point). Otherwise, the variable is printed normally.
*sl (or *+) is the blank suppression control code. This control code affects all remaining character
variables in the operand list. This control code causes no blanks to be printed for the characters between
the length pointer and the maximum length of the string. If the variable is cleared, then nothing is printed
and the print position remains unchanged.
*ll is the logical string print control code. This control code affects printing of all remaining character
variables in the operand list. This control code causes the characters contained in the logical string of the

Page 247

variable to be printed. If the form pointer of the variable is zero, no characters are printed and the print
position is not changed.
*pl (or *-) is the print suppression off control code. This control code causes printing of character
variables to revert to the normal method of printing. It cancels the effect of the *sl and *ll control codes.
*format=charexp is the format control code. This control code affects the next variable in the operand list.
charexp is a formatting mask which is used to reformat numeric and character data. Refer to the
explanation of the format statement for information about how the mask is used.
*rptchar=charexp:n is the repeat character control code. The equal sign may be replaced by a colon or a
blank space. charexp is a character variable, character literal, or character expression. If charexp is a
variable, then the form pointed character is the character to be repeated. n is a decimal constant or
numeric variable that specifies the number of times the character is to be repeated. Line wrap does not
occur; that is, the character is only repeated to the end of the current line. The print position is set to the
position after the last character printed.
*tab=n or *n are the tab control codes. These control codes adjust the print position within the current
print line. n is an integer decimal constant or numeric variable that designates the new print position. The
value of n may be 1 through 400, inclusive. The value of the numeric variable is truncated if necessary.
*flush is the flush print buffer control code. This control code causes pending print lines to be output
immediately.
*font=charexp is the font control code. charexp is a character variable, character literal, or character
expression that represents the name of a font. This control code affects all variables and literals that follow
in the operand list until another *font control code is encountered. All characters affected by a particular
*font control code will be printed in the specified font. This control code is ignored for print destinations
that do not support multiple fonts.
*color=n is the color control code. n is a numeric variable, numeric expression, or fixed color code which
specifies the new print color. This value is an integral value that corresponds to a 24-bit RGB value (red is
low eight bits, green is middle eight bits, and blue is high eight bits). The default is black. This control
code is ignored for print destinations that do not support multiple colors. Fixed color codes are: *black,
*blue, *green, *cyan, *red, *magenta, *yellow, and *white.
*p=h:v is the pixel print position control code. h is the horizontal position and v is the vertical position in
pixels. The upper left corner of the page is 1:1. This control code is useful for fine control of the print
position. The relationship between character print position and pixel print position is undefined,
although they both manipulate the single print position. This control code is ignored for print
destinations that do not support pixel positioning.
*line=h:v is the print line control code. h and v may be decimal constants or numeric variables. A line is
drawn from the current print position to the position specified by h and v. The current print position is set
to h and v. This control code is ignored for print destinations that do not support pixel positioning and
line drawing.
*linewidth=n is the specify linewidth control code. n may be a decimal constant or numeric variable. It
specifies the width, in pixels, of lines printed with the *line control code.
*rj is the right justify control code. This control code applies only to the next variable or literal in the
operand list. The characters of the next variable or literal flow left from current print position. The print
position remains unchanged. This control code is ignored for print destinations that do not support pixel
positioning.
*cj=n is the center justify control code. This control code applies only to the next variable or literal in the
operand list. The characters of the next variable or literal are centered in an area starting with the current
print position that is the number of pixels wide that is specified by the value n. If the width of the text is
too wide for the area, this control code is ignored and the text is printed normally. Otherwise, the
resulting print position is the old starting position incremented by the width of the area, not the width of
the text printed.
*textangle=n is the print angled text control code. This control code applies only to the next variable or
literal in the operand list. The characters of the next variable or literal are printed such that the upper left

Page 248

corner of the text is at the current print position. n defines the angle, in degrees, at which the text is
printed. The angle is the same as for a compass, that is north (up) is zero degrees, east (normal) is 90
degrees, south (down) is 180 degrees, and west (upside down) is 270 degrees.
*fb=charexp is a combination of a form feed and a request to change the input paper bin. This control
code applies only to the Windows cooked output type or the PCL output format. For cooked output
charexp is a bin name recognized by the driver. Use the getpaperbins statement to find out which bin
names the printer driver recognizes. For PCL output, only the first character of charexp is used and it
should be a number. A PCL escape sequence is built using this number and its meaning will depend on
the particular printer that is used.
*rectangle=h:v is the print a filled rectangle control code. The current draw position is one corner of the
rectangle, h:v specifies the diagonally opposite corner of the rectangle. h and v may be decimal constants
or numeric variables. The filled rectangle is printed in the current color. The current draw position is not
changed.
*box=h:v is the print a box control code. The current draw position is one corner of the box, h:v specifies
the diagonally opposite corner of the box. The box is printed with a line that is the current line width and
type. The box is printed in the current color. The current draw position is not changed.
*circle=n is the print a circle control code. n may be a decimal constant or numeric variable. A circle is
printed in the current color with the center at the current position and a radius of n pixels. The circle is
printed with a line that is the current line width and type. The current draw position is not changed.
*bigdot=n is the print a filled circle control code. n may be a decimal constant or numeric variable. A
filled circle is printed in the current color with the center at the current position and a radius of n pixels.
The current draw position is not changed.
*triangle=h1:v1:h2:v2 is the print a filled triangle control code. h1, v1, h2, and v2 may be decimal
constants or numeric variables. The current position is one corner of the triangle. the parameters are the
coordinates of the other two vertices. The filled triangle is printed in the current color. The current draw
position is not changed.

Page 249

pushreturn

label pushreturn prog-label
label pushreturn lblvar

prog-label is the source program label
lblvar is the source label variable

Flags affected: none
See also: call, noreturn, popreturn, return
The pushreturn statement causes the value of the source operand to be put onto the top of the return
stack, thus increasing the number of entries in the return stack by one.
If the source label variable contains an invalid value, an E 551 error occurs. If the return stack is full before
this statement executes, an E 501 error occurs.

Page 250

put

label put queue; list
queue is the queue variable
list is the list of character and numeric variables, literals, and control codes

Flags affected: over
The put statement moves a message from the list to the end of the queue specified by the queue variable.
If the queue is full before the message is moved to the queue, then the oldest message is discarded, the
message is moved to the queue, and the over flag is set.
*sl is the blank suppression control code. This control code affects all remaining character variables in the
list. This control code causes no blanks to be sent for the characters between the length pointer and the
maximum length of the string. If the variable is cleared, then no characters are sent.
*ll is the logical length control code. This control code is in effect for all character variables remaining in
the list or until a *pl control code is encountered. The logical string of the character variable is sent.
*pl is the physical length control code. This control code cancels the effect of the *ll and *sl control code.

Page 251

putfirst

label putfirst queue; list
queue is the queue variable
list is the list of character and numeric variables, literals, and control codes

Flags affected: over
The putfirst statement moves a message from the list to the beginning of the queue specified by the queue
variable. If the queue is full before the message is moved to the queue, then the oldest message is
discarded, the message is moved to the queue, and the over flag is set.
*sl is the blank suppression control code. This control code affects all remaining character variables in the
list. This control code causes no blanks to be sent for the characters between the length pointer and the
maximum length of the string. If the variable is cleared, then no characters are sent.
*ll is the logical length control code. This control code is in effect for all character variables remaining in
the list or until a *pl control code is encountered. The logical string of the character variable is sent.
*pl is the physical length control code. This control code cancels the effect of the *ll and *sl control code.

Page 252

query

label query resource, charexp; list
label query device, charexp; list

resource is the resource variable
device is the device variable
charexp is the function operand
list is a list of character and numeric variables

Flags affected: none
See also: change, open
The query statement causes the logical string of the function operand to be sent to the specified resource
or device. The resource or device responds by filling the variables in the list.

Page 253

read

label read file, numvar; list
label read ifile, var; list
label read afile, numvar; list
label read afile, key-list; list

readtab may be used in place of read
file is the label of a file declaration
ifile is the label of an ifile declaration
afile is the label of an afile declaration
numvar is the second operand
var is the second operand
list is the list of variables and tab control codes
key-list is a list of character variables, character arrays, and list variables

Flags affected: less, over
See also: open, readkg, readlk
The read statement reads data from a file and places it into the variables in the list.
The read is random if the second operand is a non-negative numeric variable. The read is sequential if the
second operand is a negative numeric variable. The read is indexed if the first operand is an ifile and the
second operand is a character variable. The read is aimdexed if the first operand is an afile and the second
operand is a character variable.
Characters are read from the file and placed in the variables in the list. The way in which data is moved to
each variable depends on the type of variable.
If the variable in the list is a character variable, each character is moved from file into the variable starting
with the first physical character position in the variable and continuing through the maximum length of
the variable. If the end of the logical record is encountered before the variable is full, then all characters
are stored. The form pointer is set to one and the logical length pointer is set to the last character moved.
The form pointers of all remaining character variables are set to zero after the end of record is reached.
If the variable in the list is a numeric variable, the characters moved from file must be valid numbers with
the same format as the numeric variable. That is, the decimal point (if present) must be in the same
position in the numeric data as in the variable. If the decimal point is aligned and the characters
constitute a valid number, then the characters are moved to the numeric variable. If the format of the
characters in the file was created using the *mp control code, then the values are first converted to valid
numeric format and then moved to the numeric variable. Zero is moved to any numeric variables left in
the list after the logical end of record is reached. If the characters do not constitute a valid number or if
the logical end of record occurs while filling a numeric variable, then a format error occurs.
If the list is terminated with a semicolon (;), then at the end of the read operation, the file position points
to the next character in the current logical record. This is considered to be a partial read. If the list is not
terminated with a semicolon, then at the end of the read operation, the file position points to the character
after the end-of-record character in the current logical record.
If the first character to be moved into the first variable of the list is an end-of-file character, then over is
set. Additionally, the form pointers of all character variables are set to zero and zero is moved to each
numeric variable. No change is made to the file position.
The list may contain tab control codes. A tab control is specified by *tab=n or *n , where n is an integer
decimal constant or numeric variable. Values of n up to 65500 are allowed.
If the read operation is for a file, ifile, or afile variable that was opened with the lockauto option, then the
read operation is implicitly converted to a readlk operation. less is affected only in this case.
If the access is sequential and the second operand has a value of -3, then the file is positioned to the end of
file and the read takes place like a normal read that encountered end of file. If the access is sequential and
the second operand has a value of -4, then the file is read backwards sequentially, beginning with the

Page 254

record before the last record read. If the access is sequential and the second operand has a value other
than -3 or -4, then the file is read sequentially starting with the character pointed to by the current file
position.
If the access is random, then the Nth record of the file is read where N is the truncated value of the
numeric variable that is the second operand. If the record number (N) is beyond the end of file, then a
range error occurs. The first record in the file has a record number value of zero.
If the access is indexed, the logical string from the character variable that is the second operand is the
lookup key used to retrieve the logical record. The lookup key matches the key in the index if they
contain identical characters and have the same number of characters. The lookup key also matches the
key in the index if the lookup key has more characters than the index key, all characters in the index key
match characters in the lookup key, and all remaining characters in the lookup key are blank. The lookup
key also matches the key in the index if the lookup key has fewer characters than the index key, all
characters in the lookup key match characters in the index key, and all remaining characters in the index
key are blank. If none of these cases occurs, the lookup key does not match a key in the index.
If the lookup key matches a key in the index, then the record is read and the variables in the list are filled
normally. If the lookup key does not match a key in the index, then over is set and the variables are
cleared and zeroed. If the form pointer of the second operand is zero, the lookup key is considered null,
and the last accessed record is reread. If the last access to the index file was unsuccessful, then an error
occurs.
If the access is aimdexed, then logical strings from each character variable in the key-list are used to
construct the read match pattern. If one or more records in the file match the read match pattern, then one
of those records is read into the variable list just as with any other read access. The remaining records (if
any) that matched the read match pattern may be read with the readkg operation. If no records in the file
match the read match pattern, over is set and the variables are cleared and zeroed. If all the logical strings
in the key-list are null, then the previously read record is reread without destroying or changing any
readkg information.
To be a valid key, the first two characters of the logical string must be valid field numbers, the third
character (the search type) must be one of X, L, R, or F, and the remaining characters are the search key
characters. A logical string of a variable in the key-list must be of length four or greater. If the logical
string is null, it is ignored. If it is not null and has an invalid format, an error occurs. The field numbers
correspond with those specified in the aimdex parameter list. Only records that match all the key
specifications are considered to match.
An X-type search specifies that an exact match must occur between the characters in the key and the
characters in the field in the record. If the length of the field is less than the number of characters from the
key, then the key string is truncated. If the length of the field is greater than the number of characters
from the key, then the key string is filled with blanks to the right.
An L-type search specifies that a left side of field match must occur between the characters in the key and
the characters in the field in the record. If the length of the field is less than or equal to the number of
characters from the key, then the key specification is treated as if it were an X-type search key.
An R-type search specifies that a right side of field match must occur between the characters in the key
and the characters in the field in the record. If the length of the field is less than or equal to the number of
characters from the key, then the key specification is treated as if it were an X-type search key.
An F-type search specifies that a floating match must occur between characters in the key and characters
in the field in the record. If the length of the field is less than or equal to the number of characters in the
key, then the key specification is treated as if it were an X-type search key.
The current match character, as specified in the open statement or elsewhere, modifies the X, L, R, and F
matching process. The current match character is a wild card character that matches any character from
the field in the record.
Aimdexed access is based on keys that are left justified, right justified, and floating. At least one key in
the key-list must meet one of the following criteria:

1. An X-type search key that has at least one non-blank, non-wild card character as the far right
character or the far left character,

Page 255

2. An L-type search key that has a non-blank, non-wild card character as the far left character,
3. An R-type search key that has at least one non-blank, non-wild card character as the far right
character or the far right character,
4. An F-type search key that has at least three contiguous non-blank, non-wild card characters.

If one of these requirements is not met, an error occurs. In general, the more keys of this nature that are
specified, the better is the performance of the read access.

Page 256

readgplk

label readgplk afile; list
afile is the label of an afile declaration
list is the list of variables and tab control codes

Flags affected: less, over
See also: read, readkgp, open
The readgplk statement is the same as the readkgp statement, except that the accessed record is locked.
If the record is already locked by another program and the wait lock option was specified in the open
statement, then the readgplk operation will wait (possibly forever) for the record to be unlocked by the
other program.
If the record is already locked by another program and the nowait lock option was specified in the open
statement, then the readgplk operation will return immediately, the variables in the list will be zeroed and
cleared, the less flag will be set, and the over flag will be cleared.
If the record is successfully read and locked, the less and over flags are cleared.
The list may contain tab control codes. A tab control is specified by *tab=n or *n , where n is an integer
decimal constant or numeric variable. Values of n up to 65500 are allowed.

Page 257

readkg

label readkg afile; list
readkgtb may be used in place of readkg
afile is the label of an afile declaration
list is the list of variables and tab control codes

Flags affected: less, over
See also: open, read
The readkg statement reads the next record in the aimdexed read match list. If there are no more records
that satisfy the last read match pattern, then the over flag is set and the variables in the list are cleared and
zeroed. If no previous aimdexed read has occurred, or if there has been an aimdexed write or insert on
the same aim file more recently than the last aimdexed read, an error results.
If the readkg operation is for an afile variable that was opened with the lockauto option, then the readkg
operation is implicitly converted to a readkglk statement. The less flag is affected only in this case.
The list may contain tab control codes. A tab control is specified by *tab=n or *n , where n is an integer
decimal constant or numeric variable. Values of n up to 65500 are allowed.

Page 258

readkglk

label readkglk afile; list
afile is the label of an afile declaration
list is the list of variables and tab control codes

Flags affected: less, over
See also: open, read, readkg
The readkglk statement functions the same as the readkg statement, except that the accessed record is
locked.
If the record is already locked by another program and the wait lock option was specified in the open
statement, then the readkglk operation will wait (possibly forever) for the record to be unlocked by the
other program.
If the record is already locked by another program and the nowait lock option was specified in the open
statement, then the readkglk operation will return immediately, the variables in the list will be zeroed and
cleared, the less flag will be set, and over will be cleared.
If the record is successfully read and locked, the less and over flags are cleared.
The list may contain tab control codes. A tab control is specified by *tab=n or *n , where n is an integer
decimal constant or numeric variable. Values of n up to 65500 are allowed.

Page 259

readkgp

label readkgp afile; list
afile is the label of an afile declaration
list is the list of variables and tab control codes

Flags affected: less, over
See also: open, read, readkg
The readkgp statement reads the previous record in the aimdexed read match list. If there are no previous
records that satisfy the last read match pattern, then over is set and the variables in the list are cleared and
zeroed. If no previous aimdexed read has occurred, or if there has been an aimdexed write or insert on
the same aim file more recently than the last aimdexed read, an error results.
If the readkgp operation is for an afile variable that was opened with the lockauto option, then the
readkgp operation is implicitly converted to a readgplk operation. The less flag is affected only in this
case.
The list may contain tab control codes. A tab control is specified by *tab=n or *n , where n is an integer
decimal constant or numeric variable. Values of n up to 65500 are allowed.

Page 260

readkp

label readkp ifile; list
readkptb may be used in place of readkp
ifile is the label of an ifile declaration
list is the list of variables and tab control codes

Flags affected: less, over
See also: open, read, readks
The readkp statement reads the record associated with the previous logical sequential key. The variables
in the list are filled in the same manner as for the read statement.
The previous logical sequential key is the next descending key in the collating sequence of the character
set. The last access to the index defines which key is next. Operations such as read, write, insert, readks,
readkp, delete, deletek, and the respective tabbed operations allow access to the index. If there is not a
prior key (that is, the beginning of the index is reached), the over flag is set and the variables in the list are
cleared and zeroed.
If the readkp operation is for an ifile variable that was opened with the lockauto option, then the readkp
operation is implicitly converted to a readkslk operation. The less flag is affected only in this case.
The list may contain tab control codes. A tab control is specified by *tab=n or *n , where n is an integer
decimal constant or numeric variable. Values of n up to 65500 are allowed.

Page 261

readkplk

label readkplk ifile; list
ifile is the label of an ifile declaration
list is the list of variables and tab control codes

Flags affected: less, over
See also: open, read, readkp
The readkplk statement is the same as the readkp statement, except that the accessed record is locked.
If the record is already locked by another program and the wait lock option was specified in the open
statement, then the readkplk operation will wait (possibly forever) for the record to be unlocked by the
other program.
If the record is already locked by another program and the nowait lock option was specified in the open
statement, then the readkplk operation will return immediately, the variables in the list will be zeroed and
cleared, the less flag will be set, and the over flag will be cleared.
If the record is successfully read and locked, the less and over flags are cleared.
The list may contain tab control codes. A tab control is specified by *tab=n or *n , where n is an integer
decimal constant or numeric variable. Values of n up to 65500 are allowed.

Page 262

readks

label readks ifile; list
readkstb may be used in place of readks
ifile is the label of an ifile declaration
list is the list of variables and tab control codes

Flags affected: less, over
See also: open, read, readkp
The readks statement reads the record associated with the next logical sequential key. The variables in the
list are filled in the same manner as for the read statement.
The next logical sequential key is the next ascending key in the collating sequence of the character set.
The last access to the index defines which key is next. Operations such as read, write, insert, readks,
readkp, delete, deletek, and the respective tabbed operations allow access to the index. If this is the first
access, the record associated with the first key in the collating sequence is read. If there are no more keys
after the last one accessed, the over flag is set and the variables in the list are cleared and zeroed.
If the readks operation is for an ifile variable that was opened with the lockauto option, then the readks
operation is implicitly converted to a readkslk operation. The less flag is affected only in this case.
The list may contain tab control codes. A tab control is specified by *tab=n or *n , where n is an integer
decimal constant or numeric variable. Values of n up to 65500 are allowed.

Page 263

readkslk

label readkslk ifile; list
ifile is the label of an ifile declaration
list is the list of variables and tab control codes

Flags affected: less, over
See also: open, read, readks
The readkslk statement is the same as the readks statement, except that the accessed record is locked.
If the record is already locked by another program and the wait lock option was specified in the open
statement, then the readkslk operation will wait (possibly forever) for the record to be unlocked by the
other program.
If the record is already locked by another program and the nowait lock option was specified in the open
statement, then the readkslk operation will return immediately, the variables in the list will be zeroed and
cleared, the less flag will be set, and the over flag will be cleared.
If the record is successfully read and locked, the less and over flags are cleared.
The list may contain tab control codes. A tab control is specified by *tab=n or *n , where n is an integer
decimal constant or numeric variable. Values of n up to 65500 are allowed.

Page 264

readlk

label readlk file, numvar; list
label readlk ifile, var; list
label readlk afile, numvar; list
label readlk afile, key-list; list

file is the label of a file declaration
ifile is the label of an ifile declaration
afile is the label of an afile declaration
numvar is the second operand
var is the second operand
list is the list of variables and tab control codes
key-list is a list of character variables

Flags affected: less, over
See also: open, read
The readlk statement is the same as the read statement, except that the accessed record is locked.
If the record is already locked by another program and the wait lock option was specified in the open
statement, then the readlk operation will wait (possibly forever) for the record to be unlocked by the other
program.
If the record is already locked by another program and the nowait lock option was specified in the open
statement, then the readlk operation will return immediately, the variables in the list will be zeroed and
cleared, the less flag will be set, and the over flag will be cleared.
If the record is successfully read and locked, the less and over flags are cleared.
The list may contain tab control codes. A tab control is specified by *tab=n or *n , where n is an integer
decimal constant or numeric variable. Values of n up to 65500 are allowed.

Page 265

recv

label recv cfile, numvar; list
cfile is the label of a comfile declaration
numvar is the timeout value
list is a list of variables

Flags affected: none
See also: comclr, comtst, comwait, recvclr, send, wait
The recv statement initiates the receipt of data from another task. list is the list of variables that are filled
with characters received. When the recv statement is executed, the status of the comfile is changed to
"receive-pending".
The timeout value is the number of seconds the recv statement will remain "receive-pending" before it is
canceled. If the timeout value is -1, then the recv will never timeout. If the timeout value is zero, the recv
will timeout immediately (if there is no data to receive).
The receive status of a comfile is set to "receive-clear" before an attempt to receive data is made.
Therefore, if the receive status of a comfile is "receive-pending" and a recv statement for the same comfile
is executed, the first recv operation will be canceled.
When the recv is complete, the status of the comfile is changed to "receive-complete". The comtst
statement must be executed to fill the list of variables with the characters received.
The receiving variables do not have to be the same lengths as the sending variables. For example, if the
send list contains two variables of length three, the recv list can contain one variable of length six. If the
recv list cannot contain all the data sent, then the excess data is ignored. The form pointers and logical
length pointers of any variables in the recv list that did not receive data are set to zero.

Page 266

recvclr

label recvclr cfile
cfile is the label of a comfile declaration

Flags affected: less
See also: recv
The recvclr statement sets the receive status of the comfile to "receive-clear". It does not affect the send
status. If the status prior to execution of the recvclr statement was "receive-pending", then the recv is
canceled and less flag is set.

Page 267

release

label release

Flags affected: over
See also: splclose
The release statement causes the currently allocated printer device to be deallocated. The release
statement is ignored if the current print output is to a file. The release operation does not cause a splclose
to occur. If a printer device is not currently allocated then an allocation of the device is attempted. If the
device is successfully allocated, it is then deallocated and the over flag is cleared. Other wise, the over
flag is set. The behavior of release on a non-allocated device may be operating system dependent.

Page 268

rename

label rename charexp1 prep charexp2
charexp1 is the old file name
charexp2 is the new file name

Flags affected: none
The rename statement renames a file. The logical string of the charexp1 operand specifies the old file
name. The logical string of the charexp2 operand specifies the new file name. If the rename is
unsuccessful, then an IO error occurs.

Page 269

replace

label replace charexp prep charvar
rep may be used in place of replace
charexp is the source operand
charvar is the destination operand

Flags affected: eos
Characters in the destination operand are replaced by characters from the source operand.
The logical string of the source operand contains pairs of characters. The first member of each pair is the
search character. The second member of each pair is the replacement character. Each character of the
logical string of the destination operand is compared to the search characters from each pair of characters
in the source operand.
If a search character matches the character in the destination operand, the replacement character of the
pair is moved to that character position in the destination operand. Replacements are performed from left
to right, one character at a time. All characters from the source are searched before a replacement is made.
If the search character is duplicated in the source, the replacement character is the one that follows the
last occurrence of the search character in the source.
The form pointers and length pointers of both operands are unchanged. If the length of the source logical
string is not an even number, the eos flag is set and no replacements are made.

Page 270

reposit

label reposit file, numvar
label reposit ifile, numvar
label reposit afile, numvar

file is the label of a file declaration
ifile is the label of an ifile declaration
afile is the label of an afile declaration
numvar is the source operand

Flags affected: equal, over
See also: fposit
The reposit statement changes the value of the current file position to the value of the source operand.
If the value of the source operand is the same as the end-of-file position, then the over flag is set. If the
value of the source operand is greater than the end-of-file position, then no change to the file position
takes place and the equal flag is set. If the value of the source operand is zero, the file is set to the position
of or before the first record.
The reposit instruction is often used with the fposit instruction to save a file position and restore it later.

Page 271

reset

label reset charvar1
label reset charvar1 prep dcon
label reset charvar1 prep numvar
label reset charvar1 prep charvar2
label reset charvar1 prep charlit
label reset charvar1 prep expression

charvar1 is the destination operand
dcon is the reset value
numvar is the variable containing the reset value
charvar2 is the character variable used to determine the reset value
charlit is the character literal used to determine the reset value
expression is a character or numeric expression. The result of the expression determines the reset value

Flags affected: eos
The reset statement sets the form pointer of the destination to the specified value.
If the first format is used, the value of the destination form pointer is set to one.
If the second format is used, the decimal constant is the new value of the destination form pointer.
If the third format is used, the value of the numeric variable is the new value of the destination form
pointer. If the value is fractional, it is truncated.
If the fourth or fifth format is used, the new value of the destination form pointer is obtained by the
formula:

(decimal value of form-pointed character or literal character of second operand) - 31
If the sixth format is used, the expression is evaluated and the result determines the value to which the
form pointer will be reset. For a character expression, the result is considered to be a literal character, and
the new form pointer value is obtained by the preceding formula. For a numeric expression, the numeric
result is the value to which the destination form pointer will be reset. If the value is fractional, it is
truncated.
If the new form pointer is less than zero, then no change occurs and the eos flag is set. If the new form
pointer is greater than the maximum length of the destination variable, then the form pointer is set to the
maximum length of the destination variable and the eos flag is set. If the form pointer is set to a value
greater than the logical length pointer of the destination variable, then the length pointer is set to the
same value as the form pointer and the eos flag is set.

Page 272

resetparm

label resetparm

Flags affected: none
See also: call, cverb, routine, getparm, verb
The resetparm statement resets the getparm position so that the next getparm statement executed will
retrieve the first optional parameter and value.

Page 273

retcount

label retcount numvar
numvar is the destination variable

Flags affected: equal, over
The retcount statement moves the number of entries in the return stack into the destination variable. If
that number is zero, then the equal flag is set. Otherwise, the equal flag is cleared. If the number is
truncated when it is moved into the destination, the over flag is set. Otherwise, the over flag is cleared.

Page 274

return

label return
label return if cond
label return if not cond
label return if function-key
label return if not function-key
label return if expression
label return if not expression

cond is one of equal, less, over, eos or greater
function-key is one of F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17,

F18, F19, F20, up, down, left, right, insert, delete, home, end, pgup, pgdn, tab, bktab,
esc, or enter

expression is an algebraic expression
Flags affected: none
See also: call, noreturn, perform, setendkey
The return statement causes program execution to continue with the statement whose address is taken
from the top of the return stack.
If the first format is used, the return is unconditional. If the return is unconditional, execution continues
with the statement from the top of the return stack.
If one of the other formats is used, execution continues with the statement from the top of the return stack
only if the condition tested by an if is true or the condition tested by an if not is false. If a condition is
not met, program
execution continues with the statement that follows the return statement.
The function-key form of the return statement is only applicable following a keyin statement that was
interrupted when a function key was pressed. Each function-key condition may only be tested once with a
goto, call, or return operation. All function-key conditions are reset after they are checked and at the start
of keyin execution.
When the return instruction transfers execution to a statement from the return stack, that entry is
removed from the stack.
If a program attempts a return when the return stack is empty, an E 503 error will occur.

Page 275

rollout, clientrollout

label rollout charexp
label clientrollout charexp

charexp is the source operand
Flags affected: over
The rollout statement causes the command line in the logical string of the source operand to be executed
by the operating system command interpreter (or shell). A new task is created to execute the command
line. DB/C program execution waits for the successful or unsuccessful completion of that task.
When running under Smart Client, the clientrollout statement causes the command line in the logical
string of the source operand to be executed by the operating system command interpreter on the client
computer. A new task is created to execute the command line. DB/C program execution waits for the
successful or unsuccessful completion of that task. When not running under Smart Client, the
clientrollout statement does nothing except that it causes the over flag to be set.
Before execution of the command line, all file and record locks are released and all non-exclusively
opened files are closed at the operating system level. The files will remain logically opened in the DB/C
program and will be reopened at the operating system level on the first I/O statement encountered.
If the source operand is a null string or if the rollout statement detects an execution error, over is set.
Program execution then resumes at the next statement.

Page 276

rotate

label rotate numexp prep numvar
numexp is the source operand
numvar is the destination operand

Flags affected: equal
The destination operand is converted to a 32 bit integer that is the value to be rotated. The source operand
is converted to an integer, by truncation if necessary, that is the number of bits that the destination will be
rotated. If the number of bits to rotate is positive, then the rotation is toward the left (toward the higher
order bits). If the number of bits is negative then the rotation is to the right. Bits rotated out of the high
order bit position are rotated into the low order bit position, and vice versa. The result is moved to the
destination operand. If the result is zero, the equal flag is set. Otherwise, the equal flag is cleared.

Page 277

routine, lroutine, endroutine

label routine list
label lroutine list

endroutine

list is a destination list of address variables
Flags affected: none
See also: call
The routine and lroutine statements define program labels that can be used as routine entry points. The
two statements operate identically, except that the label of a routine statement is visible to other compiled
modules while the label of an lroutine statement is only visible locally.
Execution of a routine or lroutine statement does nothing unless the statement is called by a call
statement with parameters. In this case, the address of each variable in the calling list is moved into the
corresponding address variable in the routine list.
If the calling list contains more variables than are in the routine list, then excess variables are ignored. If
the routine list contains more variables, then excess address variables are left unchanged. If the routine
statement is executed by any means other than a call statement with parameters, then the list of address
variables is left unchanged.
A typeless (var) address variable may be included in the destination list of a routine or lroutine statement.
A label address variable may be included in the destination list of a routine or lroutine statement if the
variable name is prefixed with the tilde (~) character.
An endroutine statement ends the scope of variables declared in the routine. A variable defined within
the scope of a routine/endroutine or an lroutine/endroutine is called a local variable. A local variable is
not usable after its corresponding endroutine statement is encountered. A local variable is visible in
routines that are nested within the routine/endroutine in which the variable is declared. Two different
local variables can have the same name as long as they are both not visible at the same place in the
program.
The definition of a local address variable that is used as a parameter in a routine or lroutine statement
may immediately follow the routine or lroutine statement. This is an exception to the rule which states
that a variable must be declared before it is used.

Page 278

scan

label scan charexp prep charvar
label scan hexcon prep charvar

charexp is the source operand
hexcon is the source operand
charvar is the destination operand

Flags affected: equal, eos
The scan statement searches for a string of characters within a character variable.
The search string is determined by the source operand. If the source is character, the search string is the
logical string. If the source is numeric, the search string is the character represented by that character
code.
The logical string of the destination operand is searched for the first occurrence of the search string. The
search begins with the form pointed character of the destination. If the search string is found in the
destination, the equal flag is set, the form pointer of the destination variable is set to point to the first
matched character, and the logical length pointer is left unchanged. If no match is found, the equal flag is
cleared and the pointers remain unchanged.
If the form pointer of either operand is zero, the eos flag is set, and the form pointer is not changed.
If the length of the logical string of the source is greater than the length of the logical string of the
destination, no match can occur.

Page 279

scrnrestore

label scrnrestore charvar
scrnrest may be used in place of scrnrestore
charvar is the source operand

Flags affected: none
See also: scrnsave, scrnsize
The scrnrestore statement restores the screen image and video state information from a character variable.
The variable must have been filled by a prior scrnsave statement. If the scrnrestore operation is unable to
restore the screen image, an E 506 error occurs.

Page 280

scrnsave

label scrnsave charvar
charvar is the destination operand

Flags affected: eos
See also: scrnrestore, scrnsize
The screen image and all screen state information are stored in the destination variable starting at the first
character of the variable. Screen state information includes the number of lines on the screen, the screen
size, the current subwindow settings, the current cursor position, the current cursor type (e.g., underline,
block, or invisible), the echo secret character, the keyin cancel character, the keyin timeout value, the
current display at tributes (e.g., *revon, *ulon, etc.), the current keyin attributes (e.g., *editon, *it, etc.),
the current ending key list, and the screen image.
The destination form pointer is set to one and the logical length pointer is set to the number of characters
moved. The destination operand must be large enough to contain the information being saved. The size
required may be ascertained with the scrnsize statement. If the destination variable is not big enough to
store all the information, the eos flag is set. Otherwise, the eos flag is cleared.

Page 281

scrnsize

label scrnsize numvar
numvar is the destination operand

Flags affected: none
See also: scrnrestore, scrnsave
The scrnsize statement moves the number of characters needed to store the screen image and all screen
state information into the destination variable. This number is the minimum size required for the
destination variable in the scrnsave statement.
Screen state information includes the number of lines on the screen, the screen size, the current
subwindow settings, the current cursor position, the current cursor type (e.g., underline, block, or
invisible), the echo secret character, the keyin cancel character, the keyin timeout value, the current
display attributes (e.g., *revon, *ulon, etc.), the current keyin attributes (e.g., *editon, *it, etc.), and the
screen image.

Page 282

search

label search exp prep var prep numexp prep numvar
exp is the key
var is the first variable in a list of contiguous variables
numexp is the number of variables in the list of contiguous variables
numvar is the destination variable

Flags affected: equal, over
The search statement compares a key variable to a list of contiguous data variables. If the search is
successful, a number is moved to the destination variable which represents the relative position of the
variable in the list that matched the key.
Each variable from the list of contiguous variables is compared to the key. The second operand, var,
specifies the first variable in the list to be searched. The number of variables to search is the value of
numexp. If the number is fractional, it is truncated (not rounded).
The comparison differs from the one performed in the match operation. The search begins with the
variable specified in the second operand and continues through contiguous variables until the search
succeeds or until the number of items to be searched is exhausted.
If the search is successful, the equal flag is set and the over flag is cleared. Furthermore, the relative
position in the list of the item matching the key is moved to the destination numeric variable. For
instance, if a match is found in the fifth item of the list, a five is moved to the destination.
If the search fails, the equal flag is cleared, the over flag is set, and the destination variable is set to zero.
If the key is a character variable, its logical string is the search string. The search string is compared to the
logical string of a variable from the list. If the length of the logical string of the key is greater than the
length of the logical string of the list variable, the search fails. If the logical length of the key is less than or
equal to the length of the variable and all characters in the key are found in the variable, the search
succeeds. If any character in the sequence does not match, the search fails.
If the key is a numeric variable or expression and the variable from the list is a numeric variable, then the
numeric value of the key is compared to the numeric value of a variable from the list. If the values are the
same, the search succeeds. If the values are not the same, the search fails.
If the key is numeric and the variable from the list is a character variable, then the matching process
works in the same fashion as if the key is a character variable.

Page 283

send

label send cfile, numvar; list
cfile is the label of a comfile declaration
numvar is the timeout value
list is a list of character and numeric variables, literals and control codes

Flags affected: none
See also: comclr, comtst, recv, sendclr
The send statement initiates the transmission of data. list is the list of variables, literals, and control codes
that make up the message that is transmitted. When the send is initiated, the send status of the comfile is
changed to "send pending".
The timeout value is the number of seconds the send will remain "send-pending" before it is canceled. If
the timeout value is -1, then the send will never timeout. If the timeout value is zero, the send will
timeout immediately if the send cannot be completed immediately.
The send status of a comfile is set to "send-clear" before an attempt to transmit data is made. Therefore, if
the status of a comfile is "send-pending" and another send for the same comfile is executed, the first send
will be canceled.
When the send has completed, the status of the sending comfile is changed to "send complete". If the send
does not complete successfully, then a timeout occurs and the status is changed to "send-timeout". The
status of a comfile can be checked using the comtst statement.
*sl is the blank suppression control code. This control code affects all remaining character variables in the
list. This control code causes no blanks to be sent for the characters between the length pointer and the
maximum length of the string. If the variable is cleared, then nothing is sent.
*ll is the logical length control code. This control code is in effect for all character variables remaining in
the list or until a *pl control code is encountered. The logical string of the character variable is sent.
*pl is the physical length control code. This control code cancels the effect of the *ll and *sl control
codes.

Page 284

sendclr

label sendclr cfile
cfile is the label of a comfile declaration

Flags affected: less
See also: send
The sendclr statement sets the send status of the comfile to "send-clear". It does not affect the receive
status. If the status prior to execution of the sendclr statement was "send-pending", then the send is
canceled and the less flag is set.

Page 285

set

label set list
list is a comma delimited list of character and numeric variables, arrays, and list variables

Flags affected: none
See also: clear
The set statement sets the value of each element of the list to "1". In the case of a numeric variable, the
value is set to 1. In the case of a character variable, the form pointer and length pointer are set to one and
the first position of the variable is set the character "1". If an entry is a list variable, then all elements of the
list are set to "1". If an entry is an array, then all variables of the array are set to "1". All other types of
variables are ignored.

Page 286

setendkey

label setendkey list
list is a comma delimited list of numeric variables, numeric arrays, decimal constants, and equate
labels

Flags affected: none
See also: getendkey, clearendkey, keyin
The setendkey statement enables the keys specified by the numeric values in the list as keyin ending keys.
The ending key values are described in the Keyboard and Display Manipulation Statements section of the
DB/C Programming Language General Information chapter.
Zero and negative values in the list are ignored.
The current keyin ending key status is saved and restored by the statesave, staterestore, scrnsave, and
scrnrestore statements.

Page 287

setflag

label setflag cond
label setflag not cond

cond is one of eos, equal, less, over
Flags affected: eos, equal, less, or over
The setflag statement alters the value of a flag. If the first format is used, the specified flag is set. If the
second format is used, the specified flag is cleared.

Page 288

setlptr

label setlptr charvar1
label setlptr charvar1 prep dcon
label setlptr charvar1 prep numvar
label setlptr charvar1 prep charvar2
label setlptr charvar1 prep charlit
label setlptr charvar1 prep expression

charvar1 is the destination operand
dcon is the new length pointer value
numvar contains the new length pointer value
charvar2 is the character variable used to determine the new length pointer value
charlit is the character literal used to determine the new length pointer value
expression is an expression used to determine the new length pointer value

Flags affected: over, eos
The setlptr statement sets the length pointer of the destination character variable.
If the first format is used, the new length pointer value is the maximum length of the destination variable.
If the second format is used, the decimal constant is the new length pointer value.
If the third format is used, the contents of the numeric variable are truncated (not rounded) to obtain the
new length pointer value.
If the fourth or fifth format is used, the new value of the destination length pointer is obtained by the
formula:

(decimal value of length-pointed character or literal character of second operand) - 31
If the sixth format is used, the expression is evaluated and the result determines the new value of the
length pointer. For a character expression, the result is considered to be a literal character, and the new
length pointer value is obtained by the preceding formula. For a numeric expression, the numeric result is
the value to which the destination length pointer will be set. If the value is fractional, it is truncated.
If the value of the new length pointer is less than the value of the form pointer, then both pointers are set
to the new value and the eos flag is set. The over flag is set if the new logical length pointer value would
be less than zero or greater than the max i mum length of the string. When the over flag is set, no change
is made to the form pointer or length pointer of the destination.

Page 289

setnull

label setnull list
list is a comma delimited list of character and numeric variables, arrays, and list variables

Flags affected: none
The setnull statement sets the value of each element of the list to the NULL value. Variables other than
character and numeric variables are ignored.

Page 290

sformat

label sformat charvar prep numvar
label sformat charvar prep dcon
label sformat chrarray prep numvar
label sformat chrarray prep dcon

charvar is the destination operand
chrarray is the destination operand
numvar contains the value of the new maximum length
dcon is the value of the new maximum length

Flags affected: over
The sformat statement changes the physical length of a character variable or of each element in a
character variable array. The maximum length of the destination character variable is changed to the new
maximum length value specified by the second operand.
If the first or third format is used, the new maximum length value is obtained from the numeric variable
by truncation, not rounding. The form pointer and the logical length pointer of the destination are set to
zero.
The maximum length can never be changed to a value that is larger than the declared maximum length
that was specified during compilation. If this is attempted, the over flag is set and no change is made to
the maximum length.
The form pointer and the length pointer of the destination operand are set to zero.

Page 291

show

label show resource prep device
label show image prep device
label show resource prep device prep numexp1 prep numexp2
label show image prep device prep numexp1 prep numexp2

resource is the source operand
image is the source operand
device is the destination operand
numexp1 is the horizontal position
numexp2 is the vertical position

Flags affected: none
See also: hide
The resource or image specified as the source operand is made visible on the destination device variable.
If the device is a window, and if images and panel resources occupy the same area of a window, images
are shown behind the panels. The layering of images that overlap with each other is undefined, and the
layering of panel resources that overlap with each other is undefined.
The third format allows a resource to be displayed at a particular location. numexp1 and numexp2
represent the horizontal and vertical positions of the upper left corner of the resource. For panel and
popupmenu resources, this position is relative to the device. For menu and toolbar resources, the position
operands are ignored. For dialog resources, the positions are relative to the screen. Also for dialog
resources, if either position value is negative then they are both ignored and the dialog will be centered
on the screen. Negative position values are meaningful for panel and popupmenu resources. For a panel
resource, whether the positions are negative or not, only the part of the panel that appears within the
boundaries of the window device will be visible. That is, it will be cropped at the edges of the parent
window. A popupmenu will be completely visible even if part or all of it is outside of the window device.
The fourth format allows an image to be displayed at a particular location. numexp1 and numexp2
represent the horizontal and vertical coordinates of the upper left corner of the image. The position is
relative to the current window. Images must be displayed within the current window. In the non-
graphical versions of DB/C DX, this format of the show statement causes a runtime error to occur.

Page 292

shutdown

label shutdown
label shutdown charexp

charexp is the source operand
Flags affected: none
The shutdown statement terminates program execution, closes all files, and returns control to the
operating system. If the source operand is specified, it is ignored.

Page 293

sound

label sound numexp1 prep numexp2
numexp1 is the first operand
numexp2 is the second operand

Flags affected: none
See also: beep
The first operand determines the pitch of the sound and the second operand determines the duration of
the sound in tenths of a second. As the value of the first operand decreases, the tone gets higher.
The sound statement may behave like the beep statement on some terminals.

Page 294

splclose

label splclose
label splclose pfile
label splclose charexp
label splclose pfile, charexp

pfile is the label of a pfile declaration
charexp is the option operand

Flags affected: none
The splclose statement causes printed output for the current spool file or device to revert to the default
printer. If the splclose is for a device, the device is deallocated.
If the second or fourth form is used, the splclose statement logically disconnects the pfile variable from
the device or file.
If the third or fourth form is used, the option operand contains a list of spool parameters separated by
commas. Certain options may be operating system dependent. The following are valid spool parameters:
D is the delete file option. In conjunction with the SUBMIT option, this option causes the spool file to be
deleted after the file has been printed.
SUBMIT or SUBMIT=string This option sends the spool file to be printed. The optional string is the name
of the printer to which the spooled file is sent.

Page 295

splopen

label splopen charexp1
label splopen pfile, charexp1
label splopen charexp1, charexp2
label splopen pfile, charexp1, charexp2

charexp1 is the spool file name or device
charexp2 is the option operand
pfile is the label of a pfile declaration

Flags affected: over
See also: print, splclose
The splopen statement redirects the data that is printed by print statements to a different print file or
device. The charexp1 operand contains the name of the file or device to which print output will be
directed. The charexp2 operand contains one or more spool options.
The splopen operation for a device does not allocate the device. The first print statement allocates the
device. If the device is already allocated to another user, then the print statement will wait until the
printer has been deallocated. The print device is deallocated by means of the release statement.
If the splopen is for a file, then the one or more records are written for each print line. The file is a runtime
operating system type text file. Standard carriage control characters are placed in the first character of
each record. The carriage control characters are: 1 (top of form), + (no vertical skip) and blank (next line).
If the splopen is for a device, then device control characters are sent to the printer. The device control
characters are: LF (line feed only), CR (carriage return only), and FF (form feed).
If the first or second form of the statement is used and no extension is given in charexp1, then the
extension .prt is assumed.
If the second or fourth form of the statement is used, then the splopen statement logically connects the
pfile variable to the device or resource specified by charexp1.
If the third or fourth form of the statement is used, then the characters in the logical string of the option
operand are used to modify the operation of the splopen and following print statements. Multiple options
are separated with commas. Certain options may be operating system dependent.
The following paragraphs describe the valid option characters.
A is the allocate device option. If the splopen is for a device, then the allocation of that device takes place
immediately if it is not allocated to another user. If the device is allocated, then the over flag is cleared. If
the device is already allocated to another user, the splopen fails and the over flag is set. The behavior of
allocating a device may be operating system dependent. If the splopen is for a file, then the file is created
only if it did not previously exist. If it did exist, splopen fails and the over flag is set. If it did not exist, the
file is created and the over flag is cleared. If this option is not used, the over flag is unchanged.
B=bin is the paper source option. bin may contain spaces. The end of bin is indicated by a comma or the
end of the option string. A comma may be embedded in the bin name by preceding it with a backslash.
Acceptable values of bin are different for each environment. Use the getpaperbins statement to determine
what values of bin will work for a given print destination.
BANNER is the banner option. This option causes a banner page to be printed before the print job. This
option is only available for Linux when running without CUPS.
BOTTOMMARGIN=n is the bottom margin (in inches) for PDF and PS print output. The default is .25.
DEST=SERVER or DEST=CLIENT are the printer destination options for Smart Client. DEST=SERVER
causes print data to be directed to a print file or device on the server. DEST=CLIENT causes print data to
be directed to a print file or device local to the client. This option is only checked for if running under
Smart Client. It will override the dbcdx.print.destination setting in DB/C DX config file.

Page 296

C or H is the compressed file output option. If the splopen is for a file, then the file created is a
compressed DB/C type file, instead of a runtime operating system text file. This option is mutually
exclusive with the D option.
D or R is the device control characters option. If the splopen is for a file, then device control characters are
placed in the print file instead of carriage control characters. This option is mutually exclusive with the C
option.
I is the ignore form feed option. This option suppresses trailing form feeds.
J is the job setup option.
L=PDF, L=PS, L=PCL, L=PCL(NORESET), L=NATIVE, and L=NONE, are the print output language op
tions. L=PDF causes the output to be in Adobe PDF format. L=PS causes the output to be in PostScript
format. L=PCL and L=PCL(NORESET) cause the output to be in PCL format. The NORESET option
causes there to be no initialization data in the output. L=NATIVE causes the output to be done using the
native operating system interface. L=NONE causes output to be basic line oriented output. L=NONE is
typically used in conjunction with the D option and may be required when directly printing printer
escape sequences. See the sections on Windows and Linux Considerations for operating system specific
details.
LEFTMARGIN=n is the left margin (in inches) for PDF and PS print output. The default is .25.
MARGIN=n is the margin (in inches) for PDF and PS print output for all 4 sides. The default is .25.
N=n is the number of copies option. n is the number of copies to be printed.
O=LANDSCAPE or O=PORTRAIT are the paper orientation options.
P is the pipe option. This option is applicable only to Linux systems.
Q is the append option. If the splopen is for a file, then this option causes the print output to be appended
to the end of the file if it previously existed. The default operation is to overwrite an existing file.
RIGHTMARGIN=n is the right margin (in inches) for PDF and PS print output. The default is .25.
S=size is the paper size option. size is the name of the paper size.
TOPMARGIN=n is the top margin (in inches) for PDF and PS print output. The default is .25.
W is the two-sided print option.
X is the no extension option. This option is applicable only if the output is to a file. If this option is
included, then no extension is added to the first operand. Otherwise, if the first operand does not have an
extension, .prt will be added.
Y=text is the document name option. If not specified it defaults to DB/C.
Z=decimal-number This option sets the dots-per-inch for PDF, PCL, and PostScript output formats. If not
specified it defaults to 300. For PCL output the decimal number is one of: 96, 100, 120, 144, 150, 160, 180,
200 225, 240, 288, 300, 360, 400, 450, 480, 600, 720, 800, 900, 1200, 1440, 1800, 2400, 3600, 7200.

Page 297

splopt

label splopt charexp
charexp is the option operand

Flags affected: over
The splopt statement specifies spool file options.
S is the printer setup option. In a GUI environment, this option causes the printer setup dialog box to be
displayed. If the user cancels the printer setup dialog box, the over flag is set to true. Otherwise, it is set
to false. This option is ignored in a non-GUI environment.

Page 298

sqlcode

label sqlcode numvar
numvar is the destination operand

Flags affected: none
The SQL return code from the most recently executed SQLEXEC statement is placed to the destination
operand.

Page 299

sqlexec

label sqlexec charexp
label sqlexec charexp from from-list
label sqlexec charexp into into-list
label sqlexec charexp from from-list into into-list

charexp is the source operand
from-list is a list of source literals and variables
into-list is a list of destination variables

Flags affected: less, over, equal
The sqlexec statement allows any SQL statement to be executed. The source operand contains the SQL
statement.
If the second or fourth format is used, then the from-list contains DB/C variables that replace variables in
the SQL statement that are of the form :n or :nn.
If the third or fourth format is used, then the into-list is used to return variables that were fetched by the
SQL statement.
If the SQL return code field is negative, then the less flag is set and the over and equal flags are cleared. If
the SQL return code is zero, then the equal flag is set and the less and over flags are cleared. If the SQL
return code is the positive number 100, then the over flag is set and the less and equal flags are cleared.
Note: 100 is the return code for row not found or no more rows to fetch.

Page 300

sqlmsg

label sqlmsg charvar
charvar is the destination variable

Flags affected: none
The SQL error message from the most recently executed SQLEXEC statement is placed to the destination
operand.

Page 301

squeeze

label squeeze charexp prep charvar
charexp is the source operand
charvar is the destination operand

Flags affected: eos
The squeeze statement moves all non-blank characters in the logical string of the source operand to the
destination operand. The destination form pointer is set to one, and the logical length pointer is set to the
number of characters moved. If the destination is not large enough to contain all non-blank characters
from the source, then as many characters as will fit are moved, and the eos flag is set.

Page 302

staterestore

label staterestore charvar
staterest may be used in place of staterestore
charvar is the source operand

Flags affected: none
See also: statesave, statesize
The screen state information stored in the source operand is restored. The variable must have been filled
by a prior statesave statement. If the staterestore operation is unable to restore the screen state, an E 506
error occurs.

Page 303

statesave

label statesave charvar
charvar is the destination operand

Flags affected: eos
See also: staterestore, statesize
The screen state information is stored in the destination variable starting at the first character of the
variable. The screen state information includes the number of lines on the screen, the screen size, the
current subwindow settings, the current cursor position, the current cursor type (e.g., under line, block, or
invisible), the echo secret character, the keyin cancel character, the keyin timeout value, the current
display attributes (e.g., *revon, *ulon, etc.), the current keyin attributes (e.g., *editon, *it, etc.), and the
current ending key list.
The destination form pointer is set to one and the logical length pointer is set to the number of characters
moved. If the destination variable is not big enough to store all the information, the eos flag is set.
Otherwise, the eos flag is cleared.

Page 304

statesize

label statesize numvar
numvar is the destination operand

Flags affected: none
See also: statesave
The statesize statement moves the number of characters needed to store the screen state information into
the destination. This number is used to deter mine the size of the destination variable in the statesave
instruction.
The screen state information includes the number of lines on the screen, the screen size, the current
subwindow settings, the current cursor position, the current cursor type (e.g., underline, block, or
invisible), the echo secret character, the keyin cancel character, the keyin timeout value, the current
display attributes (e.g., *revon, *ulon, etc.), the current keyin attributes (e.g., *editon, *it, etc.) and the
screen image.

Page 305

stop

label stop
label stop if cond
label stop if not cond
label stop if function-key
label stop if not function-key
label stop if expression
label stop if not expression

cond is one of equal, less, over, eos or greater
function-key is one of F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17,

F18, F19, F20, up, down, left, right, insert, delete, home, end, pgup, pgdn, tab, bktab,
esc, or enter

expression is an algebraic expression
Flags affected: none
See also: setendkey
The stop statement terminates program execution, closes all files, and returns control to the operating
system. Operation of the stop statement may be altered by the dbcdx.stop runtime property.
The stop statement in the first format is unconditional.
If one of the other formats is used, the stop statement is executed only if the condition tested by an if is
true or the condition tested by an if not is false. If the condition is not met, program execution continues
with the next statement.
The function-key form of the stop statement is only applicable following a keyin statement that was
interrupted when a function key was pressed. Each function-key condition may only be tested once with
a stop statement. All function-key conditions are reset after they are checked and at the start of keyin
execution.

Page 306

store

label store exp prep numexp prep list
label store charexp prep device
label store image prep device

exp is the source variable, literal, or exp ression
numexp is the index
list is a list of character variables, numeric variables, arrays or list variables
lstvar defines the list of variables
charexp is the source operand
image is the source operand
device is the destination operand

Flags affected: equal, less, over, eos (both operands numeric); eos (one or both operands character);
none (image and device variables are operands)

See also: load, move
In the first form, the store statement moves the source variable or literal into the indexed position of the
list. The value of the index (numexp) determines which member of the destination list will store the source
value. Each element of an array or list variable is counted as one variable.
The destination is the Nth variable in the list where the index defines N. The index is truncated to an
integer value, not rounded. If the value N is less than one or greater than the number of variables in the
list, then the store statement does nothing.
After a variable is selected as the destination, an implicit move operation is performed on the source.
Flags are set according to the rules used with the move instruction.
In the second form, the store statement copies the text that is the logical string of the source operand to
the destination device.
In the third form, the store statement moves an image from the image variable to the destination device.
In non-graphical versions of DB/C DX, this form of the store statement causes a runtime error to occur.

Page 307

storeadr

label storeadr adrvar prep numexp prep list
label storeadr adrvar prep numexp prep lstvar
label storeadr adrvar prep numexp prep array

adrvar is the source operand
numexp is the index
list is a list of destination address variables.
lstvar is a list variable
array is an array of address variables

Flags Affected: none
See Also: loadadr, moveadr
The source operand may be any type of variable except a label variable. The index (numexp), used to
specify the destination, is truncated to an integer value, not rounded. If the index is less than one or
greater than the number of variables in the list, then the storeadr statement does nothing.
If the first format is used, the storeadr statement moves the address of the source variable into a specified
address variable from the list. The destination address variable within the list must be the @ form of the
source operand or a typeless address variable. The value of the index (numexp) deter mines which
variable in the list is the destination. A list variable or an array of address variables is not valid in the
destination list. A list @ address variable is valid within the destination list.
If the second or third format is used, the storeadr statement moves the address of the source operand into
a specified address variable within the given list or array of addresses (lstvar or array). The value of the
index (numexp) determines which variable within the given list or which element within the given array
is the destination. The destination, within the list or array, must be the @ form of the source variable or a
var @ variable.

Page 308

storelabel

label storelabel lblvar prep numexp prep list
label storelabel prog-label prep numexp prep list

lblvar is the source label variable
numexp is the index
prog-label is the source program label
list is a list of label variables

Flags affected: none
See also: loadlabel, movelabel
The storelabel statement stores the address of the source in a label variable in the destination list. The
value of the index determines which member of the destination list will store the address of the source
label. The destination is the Nth variable from the list where the index defines N. The index is truncated
to an integer value, not rounded. If N is less than one or greater than the number of variables in the list,
then storelabel does nothing.

Page 309

subtract

label subtract numexp1 prep numvar
label subtract numexp1 prep numexp2 giving numvar
label subtract numexp1 prep numarray3
label subtract numarray1 prep numvar
label subtract numarray1 prep numarray3
label subtract numarray1 prep numarray2 giving numarray3

sub may be used in place of subtract
numexp1 is the first source operand
numexp2 is the second source operand
numvar is the destination operand
numarray1 is the first source operand
numarray2 is the second source operand
numarray3 is the destination operand

Flags affected: equal, less, over
If the first format is used, the source operand is subtracted from the destination operand and the result is
placed in the destination operand.
If the second format is used, then the first source operand is subtracted from the second source operand
and the result is placed in the destination operand.
If the third format is used, the source operand is subtracted from each element of the destination operand.
If the fourth format is used, each element of the source array is subtracted from the destination operand.
The result is placed in the destination operand.
If the fifth format is used, each element of the source array is subtracted from the corresponding element
in the destination array.
If the sixth format is used, each element of the first source array is subtracted from the corresponding
element of the second source array, and the result is placed in the corresponding element of the
destination array.
Rounding takes place when the intermediate result is moved to the destination.

Page 310

switch, case, default, endswitch

label switch var
label case exp
label case exp or exp ...
label default
label endswitch

The or bar character (|) may be used in place of or. A case statement may be continued on the next
line if a colon is used in place of the or or | character.

var is the switch variable
exp is the case comparison operand
... means that or exp may be repeated

Flags affected: none
The switch, case, default, and endswitch statements conditionally control execution of program lines
between the switch and endswitch statements.
The switch statement is required and must precede the other statements. No statements are allowed
between the switch statement and the first case statement. The case statement may be specified any
number of times, but must be specified at least once. The optional default statement must follow the last
case statement. The required endswitch statement follows all other statements within the scope of the
switch statement.
Zero or more DB/C program statements may follow each case and default statement. These statements
are executed if the case comparison operand matches the switch variable. If there are two or more case
comparison operands separated by or, the statements following the case statement are executed if the
switch variable matches any of the case comparison operands. If none of the case comparison operands
matches the switch variable, then the statements following the default statement are executed.
Each switch/endswitch group of statements may be nested inside a case or default statement group up to
32 levels deep.

Page 311

tabpage

label tabpage
Flags affected: none
See also: set, clear
The tabpage statement does nothing.

Page 312

test

label test var
var is the source variable. It may be a numeric variable, a character variable, a file variable,
an ifile variable, an afile variable, a device variable, a resource variable, or an object variable.

Flags affected: equal, less (numeric source); eos (character source)
See also: set, clear
If the source variable is a numeric variable, the flags are set as follows: If the value is zero, the equal flag
is set. If the value is non-zero, the equal flag is cleared. If the value is less than zero, the less flag is set. If
the value is greater than or equal to zero, the less flag is cleared.
If the source variable is a character variable, then the flags are set as follows: If the form pointer is zero,
the eos flag is set. If the form pointer is non-zero, the eos flag is cleared.
If the source variable is a file variable, an ifile variable, an afile variable, a device variable or a resource
variable, the over flag is cleared if it is open. Otherwise, the over flag is set.
If the source variable is an object variable, the over flag is cleared if the object variable is instantiated.
Otherwise, the over flag is set.

Page 313

testadr

label testadr adrvar
adrvar is the address variable

Flags affected: over
The testadr statement tests the validity of an address variable. The over flag is set if the address contained
is invalid. Otherwise, the over flag is cleared.

Page 314

testlabel

label testlabel lblvar
lblvar is the label variable

Flags affected: over
The testlabel statement tests the validity of a program label variable. The over flag is set if the label is
invalid. Otherwise, the over flag is cleared.

Page 315

trap

label trap prog-label if allkeys
label trap prog-label if allchars
label trap prog-label if allfkeys
label trap prog-label if event
label trap prog-label trap-option if event
label trap prog-label giving charvar trap-option if event
label trap prog-label trap-option giving charvar if event

prog-label is a program execution label
trap-option is one or more of noreset, prior, nocase, or disable
charvar is the destination character variable
event is one of range, format, cfail, io, spool, parity, debug, prtofl, queue queue,

anyqueue, timeout numexp, timestamp charexp, interrupt, int, F1, F2, F3, F4, F5,
F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, up, down, left,
right, insert, delete, home, end, pgup, pgdn, tab, bktab, esc, backspace, bkspc,
cancel, enter, char charvar, a character variable, or a one-character literal

Flags affected: none
See also: call, trapclr
The trap statement transfers control to the statement designated by prog-label when a specified event takes
place. The prog-label is the program execution label where control will be transferred when the event
occurs.
The event specifies what condition must occur for the trap to occur. For the forms of the trap instruction in
which the event keyword does not appear, a key trap is set.
The trap-options are optional and alter the operation of the trap instruction.
The actual transfer of control to the trap routine does not happen until the event occurs or until a
particular key is pressed. Execution of the trap statement only sets the trap.
After a trap occurs, the transfer of control is handled in a manner analogous to a call instruction. That is,
the current execution point in the program is saved in the return stack. When a return statement is
executed, the program resumes execution at the instruction following the statement that was executing
when the trap occurred unless the trap occurs while reading from an afile. In this case, the program
resumes execution at the beginning of the read statement.
If the first form of the trap instruction is used, the trap will occur when any key with the following value
is trapped: decimal value 1-255, F1-F20, Enter, Esc, Backspace, Tab, Back Tab, Up, Down, Left, Right,
Insert, Delete, Home, End, Page Up, and Page Down.
If the second form of the trap instruction is used, the trap will occur when any key with the following
value is trapped: decimal value 32-255.
If the third form of the trap instruction is used, the trap will occur when any of the following keys is
pressed: F1-F20, Enter, Esc, Backspace, Tab, Back Tab, Up, Down, Left, Right, Insert, Delete, Home,
End, Page Up, and Page Down.
The last four forms of the trap instruction deal with particular events.
If the event is one of range, format, cfail, io, or spool, then the trap occurs when an execution error of one
of these classes occurs.
If the event is anyqueue, then the trap occurs whenever any queue variable contains entries. The trap
event queue occurs whenever the given queue variable contains an entry. The queue event and the
noreset trap option are mutually exclusive. If both are specified, noreset is ignored.
The parity, debug, and prtofl events cannot occur.

Page 316

With the timeout event, numexp specifies the number of seconds that must elapse before the trap occurs.
The timeout resolution is one hundredth of a second. The timeout event is mutually exclusive with the
noreset trap option. Only one timeout event may be concurrently active.
With the timestamp event, charexp specifies the date and time when the trap occurs. The format of charexp
is the same as with clock timestamp. If charexp is shorter than 14 characters, it is logically extended with
zeros. timestamp resolution is one hundredth of a second, unless modified by a configuration option. If
timestamp specifies a time or date that has already passed, the trap will occur immediately. The
timestamp event is mutually exclusive with the noreset trap option. Only one timeout event may be
concurrently active.
If the event is char charvar, or simply a character variable, then the character pointed to by the form
pointer is the trap character. If the event is a one-character literal, the character specified is the trap
character. The event occurs when the corresponding keystroke is entered on the keyboard.
The other events are individual key events. These occur when the specified key stroke is entered on the
keyboard.
The last three forms of the trap instruction include trap options.
The transfer of control occurs differently if the prior trap option is specified and the statement executing
was keyin, wait, or comwait. In this case, the transfer of control is done as if the call had taken place
before the statement that was executing when the event occurred.
When the trap action occurs, the trap for that event is cleared. However, if the noreset trap option is
specified, the trap is not cleared. The queue event and the noreset trap option are mutually exclusive.
When the disable trap option is specified, the statements executing in the trap routine cannot be
interrupted by keystroke events. The effect of the disable trap option ceases when an enable or keyin
statement executes or program chaining occurs.
The trap for characters is case sensitive unless the nocase trap option is specified.
The giving charvar form of the trap statement causes information regarding the event to be stored in the
destination character variable. For error events, the error message is stored. For character traps, the
character entered at the keyboard is stored. For key traps, the name of the key is stored.

Page 317

trapclr

label trapclr event
label trapclr all
label trapclr allchars
label trapclr allfkeys
label trapclr allkeys

event is one of range, format, cfail, io, spool, parity, debug, prtofl, queue queue,
anyqueue, timeout numexp, timestamp charexp, interrupt, int, F1, F2, F3, F4, F5,
F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, up, down, left,
right, insert, delete, home, end, pgup, pgdn, tab, bktab, esc, backspace, bkspc,
cancel, enter, char charvar, a character variable, or a one-character literal

Flags affected: none
See also: trap
If the first format is used, the trapclr statement clears the trap that was set by the trap statement for the
designated event.
If the second format is used, then all traps are cleared.
If the third format is used, then all character traps are cleared.
If the fourth format is used, then all function key traps are cleared.
If the fifth format is used, then all character and function key traps are cleared.

Page 318

traprestore

label traprestore charvar
traprest may be used in place of traprestore
charvar is the source operand

Flags affected: none
See also: trap, trapclr, trapsave, trapsize
The traprestore statement restores the trap settings previously saved in the source operand by the
trapsave statement. Any traps that are currently set when the traprestore statement is executed are no
longer valid (an implicit trapclr statement all is executed). Execution of a chain or stop statement causes
any trap information stored previously by a trapsave statement to become invalid. If the traprestore
statement is unable to restore the traps, an E 506 error occurs.

Page 319

trapsave

label trapsave charvar
charvar is the destination operand

Flags affected: eos
See also: trap, traprestore, trapsize
The trapsave statement saves the states of all active traps in the destination. The current traps are not
changed.
The destination must be large enough to contain the trap information. The trapsize statement can be used
to determine the size of the destination variable. If the destination variable is not large enough to contain
the trap information, the eos flag is set.

Page 320

trapsize

label trapsize numvar
numvar is the destination operand

Flags affected: none
See also: trapsave
The trapsize statement moves the number of characters needed to store the current trap state information
in the destination variable of a trapsave statement.

Page 321

trim

label trim charexp prep charvar
charexp is the source operand
charvar is the destination operand

Flags affected: eos
All characters in the logical string of the source operand are moved to the destination except for leading
and trailing blanks. The destination form pointer is set to one and the logical length pointer is equal to the
number of characters moved. If the destination is not large enough to contain all characters to be moved,
then as many characters that will fit are moved, and the eos flag is set.

Page 322

type

label type charvar
label type var, numvar1
label type var, numvar1, numvar2
label type var, numvar1, numvar2, numvar3
label type var, numvar1, numvar2, numvar3, numvar4

charvar is the source operand
var is the source operand
numvar1 is the first destination operand
numvar2 is the second destination operand
numvar3 is the third destination operand
numvar4 is the fourth destination operand

Flags affected: equal, eos (only one operand); over (two or more operands)
If the first form of the type statement is used, the logical string of the source is checked to see if it is a
valid DB/C number. If the logical string conforms to the rules defining valid numeric data, the equal flag
is set. Otherwise, the equal flag is cleared. If the form pointer of the source is zero, the equal flag is cleared
and the eos flag is set.
If any of the other forms of the type statement is used, the type of the source variable is checked and a
corresponding number is moved to the first destination operand. If the source is a var (typeless) variable,
then the variable to which it points is used. Values that may be moved into the first variable are:

0 if the var variable contains an invalid address
1 for a char (dim) variable
2 for a number (form), integer, or float variable
3 for a char (dim) array variable
4 for a number (form), integer, or float array variable
5 for a list or varlist variable
6 for a file variable
7 for an ifile variable
8 for an afile variable
9 for a comfile variable
10 for an image variable
11 for a device variable
12 for a resource variable
13 for a queue variable
14 for a label variable
15 for a pfile variable
16 for an object variable
17 for an array of typeless pointers

If the source is an array, the number of elements in each dimension is moved to the second, third, and
fourth destination operands.
Any unused destination operands are set to zero.
If the value moved to the first destination operand is zero, then the over flag is set.

Page 323

unlink

label unlink resource
label unlink device

resource is the source operand
device is the source operand

Flags affected: none
See also: link
The link between the specified resource or device and the queue to which it is linked is destroyed.

Page 324

unload

label unload
label unload charexp

charexp is the source operand
Flags affected: none
See also: loadmod
The first format of the unload statement removes all instances of secondary modules that were not
preloaded. If the unload statement is executed from a secondary module, then all instances and modules
are unloaded except the current instance of the module containing the unload statement.
The second format of the unload statement unloads one or all instances of a secondary module. If the
logical string of the source operand contains < > or <name>, then the unnamed or named instance of a
module is unloaded. If < > and <name> are not specified, then all instances of the given module are
unloaded. If the unload statement is being executed from one of the module instances to be unloaded,
then all instances are unloaded except the current instance. The unload of preloaded module name is
ignored.

Page 325

unlock

label unlock file
label unlock file, numexp
label unlock ifile
label unlock ifile, numexp
label unlock afile
label unlock afile, numexp

file is the label of a file declaration
ifile is the label of an ifile declaration
afile is the label of an afile declaration
numexp is the source operand

Flags affected: none
The unlock statement unlocks one or all locked records in the file associated with the file, ifile, or afile
variable.
If the form of the unlock statement with numexp is specified, the value is the value returned by fposit of
the record to be unlocked. If the other form of the unlock statement is specified, all locked records are
unlocked.

Page 326

unpack

label unpack exp prep list
exp is the source operand
list is a list of character and numeric variables, arrays, and list variables

Flags affected: eos, over
The unpack statement distributes the contents of a variable among several variables. The logical string of
the source operand is moved into the variables in the list.
Characters are moved from the logical string of the source operand to the first variable in the destination
list until the maximum length of that variable has been reached. If the first variable in the list is a
character variable, then the form pointer is set to one and the length pointer is set to the last character
moved. If the first variable is a numeric variable, then the characters moved must exactly match the
destination numeric format.
Characters from the source are then moved to the second variable in the same manner. This process
continues until the variable list is exhausted or until the characters in the source operand are exhausted. If
the characters in the source operand are exhausted before all variables of the list have been used, the form
pointers of the remaining character variables are set to zero, and the values of the remaining numeric
variables are set to zero.
If a destination variable is numeric and the characters from the source do not fit the numeric format
exactly, then the over flag is set, and the value of the destination numeric variable is set to zero.
Otherwise, the over flag is cleared.
If the form pointer of the source operand is zero, the eos flag is set, the form pointer of each character
variable in the list is set to zero, and the value of every numeric variable in the list is set to zero.

Page 327

unpacklist

label unpacklist lstvar prep list
lstvar is the source list variable
list is the destination list of address vari ables and address variable arrays

Flags affected: none
The unpacklist statement moves the addresses of the elements of a list variable into the address variables
in the destination list. Each list variable element is placed successively into an address variable. If the
source list variable contains an array or another list, the array or list is considered to be a single element.
If the destination list contains address variable arrays, each element of the array is considered to be a
single element.
Variable types that do not match cause the corresponding destination variable to be set to invalid.
Typeless address variables match any type of variable.

Page 328

updatab

label updatab file; list
label updatab ifile; list
label updatab afile; list

file is the label of a file declaration
ifile is the label of an ifile declaration
afile is the label of an afile declaration
list is the list of variables, literals, and tab control codes

Flags affected: none
See also: update
The updatab statement replaces parts of the last record read or written with characters from the list of
variables. This operation cannot be performed on compressed files. An error will occur if an updatab
statement is executed before any record has been read or written or if updatab is executed immediately
after a delete instruction.
The list may contain tab control codes. A tab control is specified by *tab=n or *n , where n is an integer
decimal constant or numeric variable. Values of n up to 65500 are allowed.

Page 329

update

label update file; list
label update ifile; list
label update afile; list

file is the label of an file declaration
ifile is the label of an ifile declaration
afile is the label of an afile declaration
list is the list of variables, literals, and tab control codes

Flags affected: none
The update statement causes the last record read or written to be replaced with the logical record in the
list. This operation cannot be done on compressed files. An error will occur if an update is executed
before any record has been read or written or if an update is executed immediately after a delete
instruction.
The list may contain tab control codes. A tab control is specified by *tab=n or *n , where n is an integer
decimal constant or numeric variable. Values of n up to 65500 are allowed. The update statement will
function in the same manner as updatab when tab controls are contained in the list.

Page 330

wait

label wait
label wait list

list is a comma delimited list of queue variables and communication files
Flags affected: none
The wait statement without an operand pauses program execution until any queue is non-empty or any
open communication file operation is in the "complete" or "error" state. Execution then continues with the
statement after the wait statement.
The wait statement with a list pauses program execution until any queue specified in the list is non-
empty or any open communication file specified in the list is in the "complete" or "error" state. Program
execution then continues with the statement after the wait statement.

Page 331

weof

label weof file, numvar
label weof ifile, numvar
label weof afile, numvar

file is the label of a file declaration
ifile is the label of an ifile declaration
afile is the label of an afile declaration
numvar is the second operand

Flags affected: none
The weof statement causes an end-of-file mark to be written to the file associated with the first operand.
The weof statement causes the file to be truncated. The weof statement is considered to be random if the
second operand is nonnegative. The weof statement is considered to be sequential if the second operand
is negative.
If the weof statement is sequential and the second operand has a value of -3, the weof statement is
ignored. If the second operand has a value of -1 or -2, then the end-of-file is set to the sequential data file
position.
If the weof operation is random, then the end-of-file is set to the Nth record position of the file where N is
the truncated value of numvar.
The weof statement is ignored for data type files and text type files that do not use an end-of-file
character.

Page 332

winrestore

label winrestore charvar
winrest and restore may be used in place of winrestore
charvar is the source operand

Flags affected: none
See also: winsave, winsize
The subwindow image stored in the source operand is displayed in the current subwindow. The source
operand must have been filled by a prior winsave instruction. After the winrestore statement is executed,
the cursor is positioned in the upper left corner of the subwindow. If the winrestore operation is unable to
restore the subwindow image, an E 506 error occurs.

Page 333

winsave

label winsave charvar
save may be used in place of winsave
charvar is the destination variable

Flags affected: eos
See also: winrestore, winsize
The characters and attributes displayed in the current subwindow are stored in the destination variable
starting at the first character of the variable. The destination form pointer is set to one and the logical
length pointer is set to the number of characters moved. The winsize statement can be used to determine
the size of the destination variable. If the destination variable is not large enough to store all of the
characters in the subwindow, then the eos flag is set. Otherwise, the eos flag is cleared.

Page 334

winsize

label winsize numvar
numvar is the destination variable

Flags affected: none
See also: winsave
The winsize statement moves the number of characters needed to store the characters and attributes
displayed in the current subwindow into the destination variable of the winsave statement.

Page 335

write

label write file, numvar; list
label write ifile, var; list
label write afile, numvar; list
label write afile; list

writab may be used in place of write
file is the label of a file declaration
ifile is the label of an ifile declaration
afile is the label of an afile declaration
numvar is the second operand
var is the second operand
list is the list of variables, literals, and control codes

Flags affected: none
See also: format
The write statement writes the data contained in the list variables to the data file. The write is random if
the second operand is a nonnegative numeric variable. The write is sequential if the second operand is a
negative numeric variable. The write is indexed if the second operand is a character variable. The write is
aimdexed when the fourth format of write statement is used.
Characters are written to a record in the data file from the variables and literals in the list.
If the variable from the list is a character variable, characters are written to the data file starting with the
first character in the character variable through the character pointed to by the length pointer. Blanks are
written for each character position after the length pointer through the maximum length of the variable. If
the form pointer of the variable is zero, then blanks are written for each character position through the
maximum length of the variable.
All characters in a numeric variable or a literal are written to the data file.
If the number of characters in the logical record to be written is greater than the record size specified in
the file declaration, then the record is truncated before being written to the data file.
If the list is terminated with a semicolon (;), then no end-of-record character is written to the file. This is
considered to be a partial write. The next write must be a sequential write. If the list is not terminated
with a semicolon, then an end-of-record character is written. In any case, the file position is set to the
character position after the last character written.
If the access is sequential and the second operand has a value of -3, then the file is positioned to the end of
data file before the data is written. If the access is sequential and the second operand has a value other
than -3, then data is written to data file starting at the current file position.
If the access is random, then the file position is set to the first character of the Nth record and the data is
written to data file. N is the truncated value of the numeric variable that is the second operand.
If the access is indexed, then the logical string from the character variable that is the second operand is
used as the new key to be put into the index. If duplicates are not allowed (i.e., dup is not in the ifile
declaration), then the index is searched for a key that matches the new key. If a match is found, then the
duplicate key error occurs. If no match is found or if duplicates are allowed, then the new key is inserted
into the index and the record is written to the data file. The record is written at the file position where the
end of file is before the operation is started. An end-of-file character is automatically written after the
logical record is written. The file position is left pointing to the end-of-file character.
If the access is aimdexed, then the field information specified in the aimdex parameter list is used to
update the information in the aimdex file. The record is written to the end of the data file in the same way
as for an indexed write.
The operand list may contain tab control codes. A tab control is specified by *tab=n or *n , where n is an
integer decimal constant or numeric variable. Values of n up to 65500 are allowed. If tab controls are

Page 336

included, then the record being written must already exist because no end-of-record character is written
to the file.
*sl is the blank suppression control code. This control code affects all remaining character variables in the
list or until an *ll or *pl control code is encountered. This control code causes no blanks to be written for
the characters between the length pointer and the maximum length of the string. If the variable is cleared,
then nothing is written and the write position remains unchanged.
*ll is the logical length control code. This control code is in effect for all remaining character variables in
the list or until an *sl or *pl control code is encountered. The logical string of the character variable is
written to data file.
*pl is the physical length control code. This control code cancels the effect of the *ll and *sl control
codes.
*format=charexp is the format control code. This control code affects the next variable in the list. charexp is
a format mask which is used to reformat numeric and character data. Refer to the explanation of the
format statement for information about how the mask is used.
*zf is the zero fill control code. This control code affects only the next variable in the list. If the next
variable is a numeric variable, zeros are written instead of blanks from the variable. In addition, the
minus sign (if it exists) is written as the first character from the variable.
*zs is the zero suppress control code. This control code affects only the next variable in the list. If the next
variable is numeric with a value of zero, blanks are written for each character position of the numeric
variable (including the decimal point). If the variable is not numeric, it is written as usual.
*mp is the minus over punch control code. This control code only affects the next variable in the list. If
the next variable is a numeric variable and the value is negative, then the minus sign is replaced with a
blank (or a zero if *zf is in effect) and the far right digit of the variable is altered before it is written to
data file. The last character is altered to } if the far right digit was 0. The last character is altered to a letter
between J and R if the far right digit was 1 through 9, respectively. If the runtime property
dbcdx.file.minusoverpunch=ascii is specified, then p is used instead of } and q through y are used
instead of J through R.

Page 337

xor

label xor charexp prep charvar
label xor hexcon prep charvar
label xor numexp prep numvar

charexp is the source operand
hexcon is the source operand
numexp is the source operand
charvar is the destination operand
numvar is the destination operand

Flags affected: equal, eos
See also: and, or, not
For the first and second formats of the xor statement, the bitwise exclusive or operation is performed on
the form pointed characters of the source and destination operands. The result is stored in the form
pointed position in the destination operand. If a decimal, hexadecimal, or octal constant is used as an
operand, the character represented by that character code is used. If the result is binary zero, the equal
flag is set. If either string is null, the eos flag is set and no changes are made.
Fot the third format of the xor statement, the source and distination operands are converted to 32 bit
integers and the xor operation is performed. The result is moved to the destination operand. If the result
is zero, the equal flag is set. Otherwise, the equal flag is cleared.
The result of the xor statement is determined by comparing the bits in each operand:

0 XOR 0 evaluates to 0
0 XOR 1 evaluates to 1
1 XOR 0 evaluates to 1
1 XOR 1 evaluates to 0

Page 338

GUI Programming Reference

Creation of Windows and Timers

Windows and timers are implemented as device variables. The prepare statement causes a window or
timer to be created. Windows are shown when they are created.
The syntax of the prepare statement for creation of a window or timer device is:

prepare device prep charexp
The logical string of charexp contains a list of parameters separated by commas.

Parameters for Creation of a Window Device
window=text

window defines the name of the window device being created. text is the one to eight character
window name. One of window or floatwindow must be the first parameter in the list.

floatwindow=text
floatwindow defines the name of the floating window device being created. text is the one to
eight character window name. One of window or floatwindow must be the first parameter in the
list. A floating window is always above regular windows, is fixed size and does not allow a menu
or a toolbar.

pos=horz:vert
pos defines the position of the window relative to the upper left corner of the screen. horz is a
horizontal position in pixels (one is the far left position). vert is a vertical position in pixels (one is
the top position). If pos is omitted, the window is centered on the screen.

size=horz-size:vert-size
size defines the size of the window. horz-size is the horizontal size in pixels. vert-size is the vertical
size in pixels. size must be specified for a floating window.

maximize
maximize specifies that the window will fill the primary display. The window title bar and
system menu will be displayed. This keyword is ignored for at floating window.

title=text
text is the title of the window. The title will appear centered in the title bar.

noclose
noclose specifies that the window will not contain a close box or system command menu.

fixsize
fixsize defines the window to be of fixed size. Panning scroll bars will not be displayed.

noscrollbars
noscrollbars specifies that automatic scroll bar management will not be implemented in the
window. All scrolling must be handled by the programmer. This keyword is ignored for at
floating window.

notaskbarbutton
notaskbarbutton specifies that when the window is minimized, a button will not appear in the
taskbar. The window can be restored programmatically using the restore change function. This
keword is ignored for at floating window.

nofocus
nofocus specifies that the window will not be activated when it is created. This keyword is
ignored for at floating window.

owner=text
owner specifies the name of the window that is the owner of this floatwindow. This keyword is
only applicable to a floatwindow in Windows. When this is specified and the window that

Page 339

"owns" this window loses focus, this window is hidden. In addition, this window is always on
top of the window that "owns" it, but is not on top of other windows.

pandlgscale
pandlgscale specifies that the window size will be scaled according to the dbcdx.gui.pandlgscale
runtime property.

statusbar
statusbar specifies that the window will be created with an empty statusbar. This keyword is
ignored for at floating window.

Parameters for the Creation of a Timer Device
timer=text

timer defines the name of the timer device being created. text is the one to eight character timer
name.

Operation of Windows and Timers

The change statement
The syntax of the change statement is:

change device, charexp; list
The logical string of charexp contains the change function. The change values are contained in the list. The
following change functions are valid for a window device:
change function = "title"

The window title will be changed to the value specified in list.
change function = "size"

The size of the window will be changed to the value specified in list. The format of list is
hhhhhvvvvv where hhhhh is the horizontal size and vvvvv is the vertical size. Each value is five
digits and may be blank filled on the left.

change function = "position"
The position of the window will be changed to the horizontal and vertical coordinates specified
in list. The format of list is hhhhhvvvvv where hhhhh is the horizontal position and vvvvv is the
vertical position.

change function = "mouseon"
All mouse movements will be reported by POSN messages.

change function = "mouseoff"
No mouse movements will be reported. This is the default state.

change function = "statusbar"
The text specified in list is displayed in the status bar at the bottom of the window. A status bar
will be created if none is present.

change function = "nostatusbar"
The status bar is removed from the window.

change function = "desktopicon"
The icon in the upper left hand corner of the window will change to the icon resource named in
list if the icon resource was defined as a 16 by 16 pixel icon. If the icon resource was defined as a
32 by 32 pixel icon, the large icon associated with the window will be changed.

change function = "pointer"
The cursor will change to the shape specified by the value in list. Valid values are "appstarting",
"arrow", "handpoint", "wait", "cross", "ibeam", "help", "uparrow", "sizeall", "sizens", "sizewe",
"sizenesw", "sizenwse", and "no".

Page 340

change function = "hscrollbarpos"
The window's horizontal scroll bar is displayed and the position of the slider is specified by a five
digit value hhhhh specified in list.

change function = "hscrollbarrange"
The range of the window's horizontal scroll bar is set to the values specified in list. The format of
the values in list is lllllhhhhhppppp. lllll is the new low value of the range. hhhhh is the new high
value of the range. ppppp is the new page size. Each value must be five characters long and may
be filled with blanks on the left.

change function = "hscrollbaroff"
The horizontal scroll is removed from being displayed.

change function = "vscrollbarpos"
The window's vertical scroll bar is displayed and the position of the slider is specified by a five
digit value vvvvv specified in list.

change function = "vscrollbarrange"
The range of the window's vertical scroll bar is set to the values specified in list. The format of the
values in list is lllllvvvvvppppp. lllll is the new low value of the range. vvvvv is the new high value
of the range. ppppp is the new page size. Each value must be five characters long and may be
filled with blanks on the left.

change function = "vscrollbaroff"
The vertical scroll is removed from being displayed.

change function = "focus"
This window is made to be the active window.

change function = "unfocus"
This window is made to be inactive and the most recently active window is made to be the active
window.

change function = "careton"
The text bar caret (a vertical bar) is displayed.

change function = "caretoff"
The text bar caret is removed from being displayed.

change function = "caretsize"
The height in pixels of the text bar is specified by the five digit value nnnnn in list.

change function = "caretpos"
The upper left corner of the text bar caret is specified by the horizontal and vertical values in list.
The format of these values is hhhhhvvvvv where each value is 5 digits and each may be left filled
with blanks.

change function = "maximize"
The window will become maximized.

change function = "minimize"
The window will become minimized.

change function = "restore"
A maximized or minimized window will be restored back to its normal size and position.

The following change functions are valid for a timer device:
change function = "set"

The timer is set. list contains a timestamp in the form yyyymmddhhmmsspp. If the trailing sspp or
pp is omitted, it is assumed to be zero. When the time specified by the timestamp has passed, one
tick message will be sent.

change function = "clear"
The timer is cleared.

Page 341

change function = "msetnnn"
The timer is set to be a recurring (or multiple) timer. nnn is the number of seconds between tick
messages. A timestamp may optionally be specified in list. If specified, the timestamp is in the
same format as for the "set" change function. If timestamp is specified, the first tick message will
occur when the timestamp has passed and additional tick messages will occur at nnn second
intervals. If the timestamp is not specified, the first tick message will occur nnn seconds after the
change function occurs.

The link statement
The syntax of the link statement is:

link device prep queue
The link statement links a queue to the window or timer specified by device.

The unlink statement
The syntax of the unlink statement is:

unlink device
The unlink statement destroys the link between the window specified by device and the queue to which it
is linked.

Creation of Resources

The prepare statement with a resource variable creates menus, panels, dialog boxes, icons, toolbars, and
special dialogs. The syntax of the prepare statement for creation of resources is:

prepare resource prep charexp
The logical string of charexp contains a list of parameters separated by commas.

Parameters for Creation of Menu and Popup Menu Resources
menu=text

menu specifies that the resource is a menu bar. text is the menu name (up to eight characters).
menu must be the first parameter in the list of parameters.

popupmenu=text
popupmenu specifies that the resource is a popup menu. text is the menu name (up to eight
characters). popupmenu must be the first parameter in the list of parameters.

main=item:main-menu-entry
main defines an entry on the menu bar. item is an integer value (from 1 to 32000) that is contained
in the message sent to the queue linked with this menu resource. main-menu-entry must be a
single word. At least one main parameter must precede all other parameters.

item=item:text
item defines an entry in a pulldown menu of a menu bar or an entry in a popup menu. item is an
integer value (from 1 to 32000) that is contained in the message sent to the queue linked with this
menu resource. text is the text string shown in the pulldown menu or popup menu entry. The text
string ends when either a comma or the end of charexp is reached. A back slash (\) is the forcing
character used to include a colon within the string.

iconitem=item:icon:text
iconitem is identical to item except in that it will display the named icon to the left of the text in
the menu item.

checkitem=item:text
checkitem is identical to item with the additional ability to respond visually to the mark and
unmark change commands.

submenu=item:text
submenu defines an entry in a pulldown menu or popup menu that causes another popup menu
to be displayed to the right of the current menu. item is an integer value (from 1 to 32000) that is

Page 342

contained in the message sent to the queue linked with this menu resource. text is the text string
shown in the popup menu. The text string ends when either a comma or the end of charexp is
reached. A back slash (\) is the forcing character used to include a comma or a backslash within
the string. item parameters that follow a submenu define entries in the submenu. Submenus may
be nested up to five levels.

iconsubmenu=item:icon:text
iconsubmenu is identical to submenu except in that it will display the named icon to the left of
the text in the submenu item.

endsubmenu
endsubmenu defines the end of a submenu. item parameters that follow an endsubmenu define
entries in the menu that was active before the match submenu parameter.

gray
gray causes the preceding main, item, or submenu to be initially disabled.

key=accelerator-key
key defines the accelerator key that is associated with the preceding item. key may not be used in
a popup menu resource. accelerator-key may be one of: F1 through F12, ALTF1 through ALTF12,
SHIFTF1 through SHIFT12, CTRLF1 through CTRLF12 ,CTRLSHIFTF1 through
CTRLSHIFTF12, CTRLA through CTRLZ (may also be specified as ^A through ^Z),
CTRLSHIFTA through CTRLSHIFTZ, CTRLCOMMA, CTRLPERIOD, CTRLBSLASH,
CTRLFSLASH, CTRLSEMICOLON, CTRLQUOTE, CTRLLBRACKET, CTRLRBRACKET,
CTRLMINUS, CTRLEQUAL, PGUP, PGDN, INSERT, DELETE, HOME, and END.

line
line causes a separator line to be displayed between item parameters.

Parameters for Creation of a Panel or Dialog Box Resource
For the creation of a control box resource, the first parameter specified in charexp must be panel or dialog.
Throughout this section, the units for all horizontal and vertical positions and dimensions are pixels.
The position of any control is with respect to the upper left corner of the panel or dialog, or if contained
within a tab group, with respect to the upper left corner of the tab group. The horizontal and vertical
positions are the position of the upper left corner of the control.
atext=item:text

atext defines an active text control. It is the same as a vtext control.
box=horz-size:vert-size

box defines a rectangular frame control that is a single pixel wide. horz-size and vert-size specify
the size of the box.

boxtitle=text:horz-size:vert-size
boxtitle defines a box with a title. text is the text string displayed. The text string ends when
either a comma or the end of charexp is reached. A back slash (\) is the forcing character used to
include a colon within the string. horz-size and vert-size specify the size of the box.

boxtabs=nnc:nnc:...:nnc
boxtabs applies to the previous listbox, listboxhs, mlistbox, mlistboxhs or dropbox control. Up
to 50 nnc values may be specified. Each nn value represents the width, in pixels, of each column
in the listbox, listboxhs, mlistbox, mlistboxhs or dropbox. The c is optional and specifies
justification. If omitted then left justification is assumed. The allowed values for c are L for left, C
for center, and R for right justification. Each tab character in the line specifies a new column.

button=item:text
button defines a radio button control. item is an integer value (from 1 to 32000) that is contained
in the message sent to the queue linked with this resource. text is the text string displayed to the
right of the radio button. The text string ends when either a comma or the end of charexp is
reached. A back slash (\) is the forcing character used to include a comma within the string. The
button keyword must be specified between the buttongroup and endbuttongroup parameters.

Page 343

buttongroup
buttongroup defines the start of a group of radio buttons. Only one radio button in a button
group can be on at any time. h, v, ha, helptext, va, and button are the only parameters allowed
between a buttongroup and endbuttongroup parameter.

catext=item:text
catext defines an active centered text control. It is the same as a cvtext control, except that the
control acts as a button so that a PUSH message is sent when the text is clicked.

cdropbox=item:width:vert-size
cdropbox may only appear between the table and tableend. cdropbox specifies a common
dropbox column. item is the item number associated with the column. width is the width of the
column in pixels. vert-size is the vertical size of the dropbox when opened. Each cell of the column
has the same dropbox contents, but each cell in the column has its own selected text.

checkbox=item:text
checkbox defines a check-mark box. item is an integer value (from 1 to 32000) that may be used to
change that status of the control and is contained in the message sent to the queue linked with
this resource. text is the text string displayed to the right of the check-mark box. The text string
ends when either a comma or the end of charexp is reached. A back slash (\) is the forcing
character used to include a colon within the string.

checkbox=item:width
This form of the checkbox keyword must appear between table and tableend keywords. It
defines a checkbox style column. item is the item number associated with the column. width is the
width of the column in pixels.

ctext=text:horz-size
ctext causes text to be displayed centered within the area whose upper left corner is at the current
control position and whose width in pixels is specified by horz-size. In all other respects, ctext is
the same as text.

cvtext=item:text:horz-size
cvtext is functionally equivalent to the combination of ctext and vtext.

cvtext=item:width
This form of the cvtext keyword must appear between table and tableend keywords. It defines a
column functionally equivalent to the combination of ctext and vtext.

defpushbutton=item:text:horz-size:vert-size
defpushbutton defines the default push button control. The default push button is considered
pressed whenever the Enter key is pressed, unless another pushbutton has the keyboard focus.
item is an integer value (from 1 to 32000) that is contained in the message sent to the queue linked
with this resource. text is the text string displayed in the push button. The text string ends when
either a comma or the end of charexp is reached. A back slash (\) is the forcing character used to
include a colon within the string. horz-size and vert-size specify the size of the button.

dialog=text
dialog defines a modal dialog box. When the show statement is executed for this resource,
keyboard and mouse focus is kept by the modal dialog until the hide statement is executed. The
dialog box is displayed in front of all other windows. It is moveable. text is the resource name (up
to eight characters). The text ends when either a comma or the end of charexp is reached. The
dialog parameter may only be specified once and must be the first parameter.

dropbox=item:horz-size:vert-size
dropbox defines a drop box control. item is an integer value (from 1 to 32000) that is contained in
the message sent to the queue linked with this resource. horz-size is the horizontal size. vert-size is
the vertical size. If this keyword appears between table and tableend then it defines a dropbox
style column. In that case horz-size defines the column width. Each cell in a dropbox style column
has an independent set of contents in the drop down list. That is, the contents of the drop down
list can be different for each cell in the column. If each cell in the column should have the same
contents then use a cdropbox style column.

Page 344

edit=item:text:horz-size
edit defines a text entry control. item is an integer value (from 1 to 32000) that is contained in the
message sent to the queue linked with this resource. text is the text string initially displayed in the
edit control field. The text string ends when either a comma or the end of charexp is reached. A
back slash (\) is the forcing character used to include a colon within the string. horz-size is the
horizontal size of the control.

edit=item:width
This form of the edit keyword must appear between table and tableend keywords. It defines an
edit box style column. item is the item number associated with the column. width is the width of
the column in pixels.

endbuttongroup
endbuttongroup defines the end of a group of radio buttons.

escpushbutton=item:text:horz-size:vert-size
escpushbutton is the escape or cancel push button control. It is exactly the same as a pushbutton
except that it will also be considered to be pushed when the Esc key is pressed.

fedit=item:text:text:horz-size
fedit defines a formatted edit box control. It is the same as an edit control, except the first text
field contains a string of characters that controls the entry and display of characters in the fedit
control. Characters other than special format mask characters are displayed as is. Special format
mask characters are: A, U, L, Z, 9, . (period), and \ (backslash). A means allow any character to be
entered. U and L mean allow any character, but force them to upper and lower case, respectively.
Z and 9 mean only allow digits and right justify automatically when the control loses focus.
When the control loses focus, any characters corresponding with the 9 mask character are
replaced with 0 and any characters corresponding with the Z mask character are replaced with
blank. The period character is also a special mask character which acts with the 9 and Z mask
characters to allow for numeric data entry. A backslash (\) is the forcing character.

font=fontname(options)
font defines the font for text in the controls that follow. fontname and (options) are optional, but
one or both must be specified. fontname is the font name. Valid font names are: Courier,
Helvetica, Times, Monaco, System, and Default. options contains the font size and other font at
tributes. The maximum number of different fonts allowed in panel and dialog resources is 30.

gray
gray specifies that the previous control is initially displayed in the gray (or inactive) state.

h=horz
The h parameter changes the horizontal position for the next control. horz is the horizontal
position (one is the far left position).

ha=horz-adj
The ha parameter changes the horizontal position for the next control. horz-adj is the horizontal
adjustment (positive or negative) of the horizon position.

helptext=text
helptext specifies the help text for the previous control.

hscrollbar=item:horz-size:vert-size
hscrollbar defines a horizontal scroll bar control. item is an integer value (from 1 to 32000) that is
contained in the message sent to the queue linked with this resource. horz-size is the horizontal
size. vert-size is the vertical size. The default range is one.

icon=image
icon specifies an icon. image is the name of an icon resource that contains the image that is
displayed.

icondefpushbutton=item:image:horz-size:vert-size
icondefpushbutton defines a control that is the same as a defpushbutton, except that an icon is

Page 345

displayed inside of the button instead of text. If the size of the icon is larger than the button size,
extra pixels are chopped off. If it is smaller, the background color will show.

iconescpushbutton=item:image:horz-size:vert-size
iconescpushbutton defines a control that is the same as a escpushbutton, except that an icon is
displayed inside of the button instead of text. If the size of the icon is larger than the button size,
extra pixels are chopped off. If it is smaller, the back ground color will show.

iconpushbutton=item:image:horz-size:vert-size
iconpushbutton defines a control that is the same as a pushbutton, except that an icon is
displayed inside of the button instead of text. If the size of the icon is larger than the button size,
extra pixels are chopped off. If it is smaller, the background color will show.

insertorder
insertorder applies to the previous listbox, listboxhs, mlistbox, mlistboxhs or dropbox control.
It means that the order of the entries in the listbox, listboxhs, mlistbox, mlistboxhs or dropbox is
determined by the order and location in which each entry was inserted. See the insert change
statement operations. If this keyword appears between table and tableend then it applies to the
most recent dropbox or cdropbox column. Note that this attribute always applies to all rows in a
column.

justifycenter
justifycenter specifies that the previous edit, ledit or fedit control should initially have its text
center justified. If this keyword appears between table and tableend then it applies to the most
recent edit column.

justifyleft
justifyleft specifies that the previous edit, ledit or fedit control should initially have its text left
justified. This is the default. If this keyword appears between table and tableend then it applies
to the most recent edit column.

justifyright
justifyright specifies that the previous edit, ledit or fedit control should initially have its text
right justified. If this keyword appears between table and tableend then it applies to the most
recent edit column.

ledit=item:text:horz-size:max-chars
ledit defines a defined character maximum edit control. It is the same as an edit control, except
that max-chars specifies the maximum number of characters that may entered into the control.

listbox=item:horz-size:vert-size
listbox defines a single line selectable list box control. item is an integer value (from 1 to 32000)
that is contained in the messages sent to the queue linked with this resource. horz-size is the
horizontal size. vert-size is the vertical size.

listboxhs=item:horz-size:vert-size
listboxhs defines a single line selectable list box, which has a horizontal scroll bar that
automatically appears when the width of a line of text is greater than the width of the listboxhs
control, or when the sum of boxtab widths for the control is greater than the width of the control.
item is an integer value (from 1 to 32000) that is contained in the messages sent to the queue
linked with this resource. horz-size is the horizontal size. vert-size is the vertical size.

ltcheckbox=item:text
ltcheckbox defines a check-mark box. It is the same as a checkbox control except that the text
string is displayed to the left of the check-mark box.

medit=item:text:horz-size:vert-size
medit defines a multiple line edit control. It is the same as an edit control, except that the horz-size
and vert-size specify the size of the multiple line edit box and word wrap occurs at the right side
of each line.

mediths=item:text:horz-size:vert-size
mediths is an medit control with a horizontal scrollbar.

Page 346

medits=item:text:horz-size:vert-size
medits is an medit control with a horizontal and vertical scrollbar.

meditvs=item:text:horz-size:vert-size
meditvs is an medit control with a vertical scrollbar.

mledit=item:text:horz-size:vert-size:max-chars
mledit defines a defined character maximum multiple line edit control. It is the same as an medit
control, except that max-chars specifies the maximum number of characters that may entered into
the control.

mlediths=item:text:horz-size:vert-size:max-chars
mlediths is an mledit control with a horizontal scrollbar.

mledits=item:text:horz-size:vert-size:max-chars
mledits is an mledit control with a horizontal and vertical scrollbar.

mleditvs=item:text:horz-size:vert-size:max-chars
mleditvs is an mledit control with a vertical scrollbar.

mlistbox=item:horz-size:vert-size
mlistbox defines a multi-line selectable list box. item is an integer value (from 1 to 32000) that is
contained in the messages sent to the queue linked with this resource. horz-size is the horizontal
size. vert-size is the vertical size.

mlistboxhs=item:horz-size:vert-size
mlistboxhs defines a multi-line selectable list box, which has a horizontal scroll bar that
automatically appears when the width of a line of text is greater than the width of the mlistboxhs
control, or when the sum of boxtab widths for the control is greater than the width of the control.
item is an integer value (from 1 to 32000) that is contained in the messages sent to the queue
linked with this resource. horz-size is the horizontal size. vert-size is the vertical size.

noclose
noclose causes there to be no close button in the dialog box. This parameter may only be used
with dialog.

nofocus
nofocus specifies that the previous control cannot receive keyboard focus.

noheader
noheader specifies that the table does not have a header row. This keyword must be specified
between the table and tableend keywords. Note that the table keyword must still specify the
titles of the columns, which are ignored, to define number of columns in the table.

panel=text
panel defines a clipped box without borders or title that contains controls. It is attached to a
window when the show statement is executed. text is the resource name (up to eight characters).
The panel parameter may only be specified once and must be the first parameter.

pedit=item:text:horz-size
pedit defines a password edit box. A password edit box control is the same as an edit control,
except that an asterisk or block is displayed for each character in the control.

pledit=item:text:horz-size:max-chars
pledit defines a maximum character password edit box. It is the same as an edit control, except
that max-chars specifies the maximum number of characters that may be entered into the control,
and an asterisk or block is displayed for each character in the control.

popbox=item:horz-size
popbox defines a control that is a combination of a readonly edit box and a pushbutton. item is an
integer value (from 1 to 32000) that identifies the control. horz-size is the horizontal size of the
control. The contents of this control are changed using the text change command. If the user
clicks anywhere in the control a PUSH message is put in the queue. This control can receive the

Page 347

focus. If this keyword appears between table and tableend then it defines a popbox style column.
In that case horz-size defines the column width.

progressbar=item:horz-size:vert-size
progressbar defines a progress bar control. item is an integer value (from 1 to 32000) that is
contained in the message sent to the queue linked with this resource. horz-size is the horizontal
size. vert-size is the vertical size. The default range is 1 to 100.

pushbutton=item:text:horz-size:vert-size
pushbutton defines a pushbutton control. item is an integer value (from 1 to 32000) that is
contained in the message sent to the queue linked with this resource. text is the text string
displayed in the push button. The text string ends when either a comma or the end of charexp is
reached. A back slash (\) is the forcing character used to include a colon within the string. horz-
size and vert-size specify the size of the button.

readonly
readonly specifies that the previous control will initially be a read only control. The previous
control must be an edit control, or a table if readonly is immediately after a tableend. Controls in
the readonly state receive keyboard focus, but may not be changed by the user. The readonly and
showonly states are the same, except that a control in the showonly state never receives keyboard
focus.

ratext=item:text
ratext defines an active right justified text control. It is the same as an rvtext control, except that
the control acts as a button so that a PUSH message is sent when the text is clicked.

rtext=text
rtext causes text to be displayed such that the upper right corner of the area used by the text is the
current control position. In all other respects, rtext is the same as text.

rvtext=item:text
rvtext is functionally equivalent to the combination of rtext and vtext.

rvtext=item:width
This form of the rvtext keyword must appear between table and tableend keywords. rvtext
defines a static text column. item is the item number associated with the column. width is the
width of the column in pixels. Text in this cell will be right justified.

showonly
showonly specifies that the previous control, or table if immediately after a tableend, will not
respond to mouse clicks and cannot receive keyboard focus. showonly does not apply to popbox
controls.

size=horz-size:vert-size
size defines the size of the control box. horz-size is the horizontal size and vert-size is the vertical
size of the dialog box. This parameter is ignored for a panel.

tab=item:text
tab specifies the start of a new page of controls in a tab group. item is the item number associated
with this page. text is the description of this page.

tabgroup=horz-size:vert-size
tabgroup specifies the start of a multi-page group of controls. tabgroup must be followed
immediately by the first tab specifier. Two or more tab specifiers are each followed by the controls
that are contained within the page of controls for that tab. The group ends with tabgroupend.
The size of the area containing the group controls is specified by horz-size and vert-size. Within a
tab group, the horizontal and vertical positions of each control (specified by h, v, ha and va) are
with respect to the upper left corner of the display area of the tab group.

tabgroupend
tabgroupend specifies the end of a group of controls.

table=item:horz-size:vert-size:title-text: … :title-text
table specifies the start of a group of controls comprising a table. item is the item number

Page 348

associated with this table. horz-size is the horizontal size. vert-size is the vertical size. title-text may
be repeated one or more times. Each title-text is a column heading. The table will have a number
of columns equal to the number of times that title-text appears. Scroll bars on the right and
bottom will appear as needed. To embed a colon or comma in a column title, precede it with a
backslash. A table must have at least one column.

tableend
tableend specifies the end of the control group for a table.

textcolor=color
textcolor defines the color for the text in the controls that follow. color may be one of: red, green,
blue, cyan, yellow, magenta, black, or white. Note that the color of a pushbutton text cannot be
changed and will not be affected by this parameter.

text=text
text causes text to be displayed. text is the text string displayed. The text string ends when either
a comma or the end of charexp is reached. A back slash (\) is the forcing character used to include
a comma within the string.

title=text
title defines the title of a modal dialog box. text is a text string that is the title. The text string ends
when either a comma or the end of charexp is reached. A back slash (\) is the forcing character
used to include a comma within the string. This parameter may only be specified once and may
not be used with panel.

tree=item:horz-size:vert-size
tree defines a control that displays a hierarchical list of items. The tree control is initially empty
with an insert position at the root level.

v=vert
The v parameter changes the vertical position for the next control. vert is the vertical position (one
is the top position).

va=vert-adj
The va parameter changes the vertical position for the next control. vert-adj is the vertical
adjustment (positive or negative) of the vertical position.

vicon=item:image
vicon specifies a variable icon. item is an integer value (from 1 to 32000) that will be used in the
change statement to change the icon displayed. image is the name of an icon resource that
contains the image that is displayed initially.

vscrollbar=item:horz-size:vert-size
vscrollbar defines a vertical scroll bar control. item is an integer value (from 1 to 32000) that is
contained in the message sent to the queue linked with this resource. horz-size is the horizontal
size. vert-size is the vertical size. The default range is one.

vtext=item:text
vtext is the same as a text control, except the text value may be changed with the change
statement. item is an integer value (from 1 to 32000) that identifies the control.

vtext=item:width
This form of the vtext keyword must appear between table and tableend keywords. vtext defines
a static text column. item is the item number associated with the column. width is the width of the
column in pixels.

Parameters for Creation of an Icon Resource
Icons created for use in a tree must be 16 pixels wide and 16 pixels high.
icon=text

icon specifies that the resource is an icon. text is the icon name (up to eight characters). icon must
be the first parameter in the list of parameters.

Page 349

h=horz-size
h defines the horizontal size of the icon. The size is measured in pixels. horz-size is an integer with
valid values from 4 through 64. If h is not specified, the horizontal size of the icon is 16.

v=vert-size
v defines the vertical size of the icon. The size is measured in pixels. vert-size is an integer with
valid values from 4 through 64. If v is not specified, the vertical size of the icon is 16.

colorbits=nn
colorbits defines the number of color bits per pixel for this icon. The valid values for nn are 1, 4,
and 24. If colorbits is not specified, the icon is a black and white icon (the default is 1).

pixels=xxxx...
pixels defines the color values of each pixel in the icon. Each x is a hexadecimal character (values
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F). The pixels are specified left to right and top to bottom.
For colorbits=1 and colorbits=4, each hexadecimal character represents a pixel. For colorbits=1,
if the hexadecimal character is zero, the pixel is black. Otherwise the pixel is white. For
colorbits=4, here is a list of what each hexadecimal character represents:

value 0 is black
value 1 is dark blue
value 2 is dark green
value 3 is dark cyan
value 4 is dark red
value 5 is dark magenta
value 6 is brown
value 7 is light gray
value 8 is dark gray
value 9 is bright blue
value A is bright green
value B is bright cyan
value C is bright red
value D is bright magenta
value E is yellow
value F is white

For colorbits=24, each six hexadecimal characters represent the color of one pixel. From each
group of six characters, the first two represent the blue intensity, the second two represent the
green intensity, and the third two characters represent the red intensity. In each pair, the first
character is the high order hexadecimal digit and the second is the low order hexadecimal digit.
The character T can be used to represent a pixel that should be transparent in icons with
colorbits=1 or colorbits=4. For colorbits=24 icons, use TTTTTT to define a transparent pixel.

Parameters for Creation of a Toolbar Resource
toolbar=text

toolbar specifies that the resource is a toolbar. text is the resource name (up to eight characters).
toolbar must be the first parameter in the list of parameters.

pushbutton=item:icon:text
pushbutton defines a push button control. item is an integer (from 1 to 32000) that is contained in
the message sent to the queue linked with this resource. icon is the name of the icon resource that
contains the image that is displayed. text is the help or tooltip text that describes the button.

lockbutton=item:icon:text
lockbutton defines a push button control. item is an integer (from 1 to 32000) that is contained in
the message sent to the queue linked with this resource. icon is the name of the icon resource that
contains the image that is displayed. text is the help or tooltip text that describes the button.

dropbox=item:horz-size:vert-size
dropbox defines a drop box control. item is an integer value (from 1 to 32000) that is contained in
the message sent to the queue linked with this resource. horz-size is the horizontal size. vert-size is
the vertical size.

Page 350

gray
gray specifies that the previous button is initially displayed in the gray (or inactive) state.

space
space defines a separator between buttons.

Parameters for Creation of Special Dialogs
opendirdlg=text

openfiledlg specifies that a standard directory chooser dialog resource is created. text is the
resource name (up to eight characters). This must be the first parameter in the list of parameters.

openfiledlg=text
openfiledlg specifies that a standard file chooser dialog resource is created. text is the resource
name (up to eight characters). This must be the first parameter in the list of parameters.

saveasfiledlg=text
saveasfiledlg specifies that a standard save file as dialog resource is created. text is the resource
name (up to eight characters). This must be the first parameter in the list of parameters.

default=text
default specifies default directory or file that will be highlight when the special dialog is first
shown. text specifies the directory or file. This parameter may follow the opendirdlg, openfiledlg,
or saveasfiledlg parameter.

fontdlg=text
fontdlg specifies that a standard font chooser dialog resource is created. text is the resource name
(up to eight characters). This must be the only parameter in the list of parameters.

colordlg=text
colordlg specifies that a standard color chooser dialog resource is created. text is the resource
name (up to eight characters). This must be the only parameter in the list of parameters.

alertdlg=text
alertdlg specifies that an alert message box dialog resource is created. text is the resource name
(up to eight characters). One text parameter follows this keyword.

text=text
text specifies the text that will be displayed in an alert dialog.

Operation of Resources

The show statement
The syntax of the show statement is:

show resource prep device prep numexp prep numexp
The show statement causes the specified resource to be displayed in the window specified by device. The
optional third and fourth operands specify the horizontal and vertical positions of the upper left corner of
the resource. For dialogs, this is relative to the screen. For panels and popupmenus this is relative to the
window. The position operands are ignored for other resources. Only one toolbar may be shown at any
given time on a window.
If the third and fourth operands are not specified, a dialog is displayed at the center of the screen, panels
popupmenus are displayed at position 1:1 with respect to the window. For dialogs only, if either position
operand is negative, the dialog will be centered on the screen. Negative positions are meaningful for
popupmenus and panels.

The hide statement
The syntax of the hide statement is:

hide resource

Page 351

The hide statement erases the specified resource from the window in which it is shown.

The link statement
The syntax of the link statement is:

link resource prep queue
The link statement links a queue with the menu or a control box.

The unlink statement
The syntax of the unlink statement is:

unlink resource
The unlink statement destroys the link between the specified resource and queue with which it is linked.

The query statement
The syntax of the query statement is:

query resource, charexp; list
The logical string of charexp is the query function. The result returned by a query statement is a string of
characters that is moved to the list of variables in the same manner as for a read statement.
query function = "statusnnnnn" (return the status, nnnnn is a one to five-digit item number)

For check-mark boxes, radio buttons and menu items the result is cs where:
c is Y or N (checked status), always N if the item is in a toolbar
s is G or A (available status)

For edit fields the result is text
For scroll bars the result is nnnnn which is the current position
For trees the result is the text of selected entry
For list boxes and drop boxes the result is text of selected entry, unless lineon is in effect the

result moved into the first variable in list will be the one-based line number of
the selection. The receiving variable can be numeric in this case. A zero will be
returned if there is no selection.

For multi-line list boxes the result is a list which is comma-delimited concatenation of the text
of all selectedlines, unless lineon is in effect the result moved into the first variable in
list will be the comma delimited, one-based line numbers of all selected lines.

For toolbar resources the result is c where:
c is Y or N (lock button locked status)

query function = "statusnnnnn[row]"
For a table this function queries the status of the cell at row and column. nnnnn is the item
number associated with the column. row is a one-based index of the row. This query will return
the text of a popbox, edit, vtext, or rvtext cell in list. This query will return Y or N for a checkbox
cell in list. For a dropbox or cdropbox cell row is required and this query will will return the
selected text, unless lineon is in effect then the returned value will be the one-based index of the
selected line instead of the text. If nothing is selected, and lineon is in effect, then a zero will be
returned. If nothing is selected, and lineon is not in effect, then a zero length string will be
returned.

query function = "getrowcountnnnnn"
For a table this query will return the five digit count of rows in the table.

The change statement
The syntax of the change statement is:

change resource, charexp; list
The logical string of charexp is composed of one or more change functions, each of which may be followed
by zero or more items numbers. The functions and the item numbers must be separated by commas
except for the first item number after a function. The comma is optional there. Item numbers may have
leading blanks. The data field (list) will be used by all of the functions in a particular change that require
data.

Page 352

In all the following change functions, unless otherwise specified, nnnnn represents the item number of a
control. Item numbers can be one to five digits in length. Valid colors are one of: red, green,blue, cyan,
yellow, magenta, black, or white, or a numeric value which is interpreted as a 24 bit RGB value.
change function = "adddropboxnnnnn" (add dropbox)

For a toolbar, add a new dropbox control to a toolbar. list contains a string of 10 characters in
the format hhhhhvvvvv where hhhhh is the horizontal size of the dropbox and vvvvv is
the vertical size

change function = "addlockbuttonnnnnn" (add lockbutton)
For a toolbar, list contains the name of the icon resource for the new lock button

change function = "addpushbuttonnnnnn" (add pushbutton)
For a toolbar, list contains the name of the icon resource for the new push button

change function = "addrownnnnn" (add row)
For a table, add an empty row to the bottom of the table. nnnnn is the item number of the table.

change function = "addspace" (add space)
For a toolbar, add a space before or after the next button

change function = "availablennnnn" (make control available)
For a menu item, toolbar button, or any panel or dialog control, make control available.

change function = "availableall"
For a panel or dialog this will make all controls available.
For a menu, all menu items are made available.

change function = "collapsennnnn"
For a tree control, list contains the line number at the current indent level that will be collapsed

to hide the children. If the line number is invalid, an I794 error will occur.
change function = "color" (set color)

For a color picker dialog, set the default color specified in list. The format of the color is this 15
character string of digits rrrrrgggggbbbbb where rrrrr is the red intensity, ggggg is the
green intensity, and bbbbb is the blue intensity.

change function = "defpushbuttonnnnnn" (new default pushbutton)
For a pushbutton, make the pushbutton specified by nnnnn be the default pushbutton.

change function = "deletennnnn" (delete a line)
For a listbox, listboxhs, mlistbox, mlistboxhs or dropbox control, list contains text of item that

will be deleted.
For a toolbar button, delete button whose item number is nnnnn
For a tree control, delete the current line from the control. If the current line is invalid an I794

error will occur. The delete function invalidates the current position, but the indent level
will remain unchanged.

For a cdropbox column in a table, where nnnnn is the item number associated with the column,
list contains the text of the item that will be deleted.

change function = "deletennnnn[row]" (delete a line from a dropbox in a table cell)
For a dropbox column in a table, nnnnn is the item number associated with the column. row is a

one-based index of the row. list contains the text of the item that will be deleted.
change function = "deleteallrowsnnnnn" (delete all rows in a table)

For a table, delete all the rows. nnnnn is the item number associated with the table.
change function = "deletelinennnnn" (delete a line by line number)

For a listbox, listboxhs, mlistbox, mlistboxhs or dropbox control, list contains the line number of
the line that will be deleted.

For a cdropbox column in a table, where nnnnn is the item number associated with the column,
list contains the line number of the line that will be deleted.

change function = "deletelinennnnn[row]" (delete a dropbox item from a table cell)
For a table, and only for a dropbox column, nnnnn is the item number associated with the

Page 353

column. row is a one-based index of the row. list contains the line number of the item
that will be deleted.

change function = "deleterownnnnn[row]" (delete a row from a table)
For a table, delete a row indexed by row (one-based) where nnnnn is the item number of the table.

change function = "deselectnnnnn" (deselect item)
For a multi-line list box, list contains the text of an item for which highlighting is turned off.
For a tree control, the line at the current position will be deselected if it is currently selected.

change function = "deselectallnnnnn" (deselect all items)
For a multi-line list box, highlighting is turned off for all lines.

change function = "deselectlinennnnn" (deselect item by line number)
For a multi-line list box, list contains the line number of the line to turn off highlighting for.

change function = "dirname" (set directory)
For an open directory dialog, set the default directory to the name specified in list.

change function = "downlevelnnnnn" (position down one level)
For a tree control, decrease the current indent level one towards the root level.

change function = "erasennnnn" (erase all)
For an edit field, erase the text field.
For a listbox, listboxhs, mlistbox, mlistboxhs, dropbox, or tree control, delete all items.
For a vtext, rvtext, cvtext, or popbox control, erase the text.
For a cdropbox column in a table, nnnnn is the item number associated with the column.

Remove all of the lines from the cdropbox.
change function = "erasennnnn[row]" (erase all lines from a dropbox in a table)

For a text or dropbox column in a table, nnnnn is the item number associated with the column.
row is a one-based index of the row. For a text cell, erase the text. For a dropbox cell,
remove all lines from the dropbox.

change function = "escpushbuttonnnnnn" (new escape pushbutton)
For a pushbutton, make the pushbutton specified by nnnnn be the escape pushbutton

change function = "expandnnnnn" (expand a tree)
For a tree control, list contains the line number at the current indent level that will be expanded

to reveal the children. If the line number is invalid, an I794 error will occur.
change function = "feditmasknnnnn" (change mask)

For an fedit field, list contains the new mask string.
change function = "filename" (set filename)

For an open file or save as file dialog, set the default filename to the name specified in list.
change function = "focusnnnnn" (set focus)

The keyboard focus is switched to the control specified by nnnnn.
change function = "focusoff" (stop focus report)

This function stops FOCS messages from being sent by the dialog or panel.
change function = "focuson" (report focus change)

This function causes all focus changes with a dialog or panel to be reported with FOCS messages.
change function = "fontname" (set font name)

For a font picker dialog, set the default font name to the name specified in list.
change function = "graynnnnn" (make control gray or unavailable)

For a menu item, toolbar button or any panel or dialog control, make the control gray.
change function = "grayall" (make all controls gray or unavailable)

For a panel or dialog, make all of the controls gray.
For a menu, all menu items are made gray.

Page 354

change function = "helptextnnnnn" (change help text)
For all panel, dialog, and toolbar controls, list contains the help text for the control specified.

change function = "hidennnnn" (hide menu entry)
For a menu item, hide the menu item.

change function = "iconnnnnn" (set icon)
For a toolbar button, list contains the name of the icon resource to be displayed in the button.
For a tree control, list contains the name of the icon to be displayed at the current insert position.
For a variable icon control, list contains the name of the icon resource to display.
For an icon pushbutton, list contains the name of the icon resource to display. The icon contained

in the icon resource must be the same size as the icon being replaced.
change function = "insertnnnnn" (insert item)

For a listbox, listboxhs, mlistbox, mlistboxhs or dropbox control, list contains text of item that
will be inserted.

For a tree control, the text in list will be inserted immediately after the line at the current position.
If the line number is invalid, the insert function is the same as the insertafter function.

For a cdropbox column in a table, nnnnn is the item number associated with the column. list
contains the text that will be inserted in the cdropbox.

change function = "insertnnnnn[row]" (insert a line in a dropbox in a table)
For a dropbox column in a table, nnnnn is the item number associated with the column. row is a

one-based index of the row. list contains the text that will be inserted in the dropbox.
change function = "insertafternnnnn" (insert item)

For a listbox, listboxhs, mlistbox, mlistboxhs or dropbox control, if list is not specified this causes
future insert and minsert change functions to insert lines after the last entry in the list or
drop box. If list is specified, this causes future insert and minsert change functions to
insert lines after the entry whose text value matches list.

For a tree control, the text in list is inserted after the last line at the current indent level.
For a toolbar resource, if nnnnn is not specified this causes future addpushbutton, addlockbutton

addropbox, and addspace change functions to insert buttons after the first button in the
toolbar. If nnnnn is specified this causes future addpushbutton, addlockbutton,
addropbox, and addspace change functions to insert buttons after the button whose
item number is nnnnn.

For a cdropbox column in a table, nnnnn is the item number associated with the column. If list is
not specified, this causes future insert and minsert change functions to insert lines after
the last entry in the cdropbox. If list is specified, this causes future insert and minsert
change functions to insert lines immediately after the entry whose text value matches list.

change function = "insertafternnnnn[row]" (insert in a dropbox in a table)
For a dropbox column in a table, nnnnn is the item number associated with the column. row is a

one-based index of the row. If list is not specified, this causes future insert and minsert
change functions to insert lines after the last entry in the dropbox. If list is specified, this
causes future insert and minsert change functions to insert lines immediately after the
entry whose text value matches list.

change function = "insertbeforennnnn" (insert item)
For a listbox, listboxhs, mlistbox, mlistboxhs or dropbox controls, if list is not specified this causes

future insert and minsert change functions to insert lines before the first entry in the list
or drop box. If list is specified this causes future insert and minsert change functions to
insert lines immediately before the entry whose text value matches list.

For a tree control, the text in list is inserted before the first line at the current indent level.
For a toolbar resource if nnnnn is not specified this causes future addpushbutton, addlockbutton

addropbox, and addspace change functions to insert buttons before the first button in the
toolbar. If nnnnn is specified this causes future addpushbutton, addlockbutton,
addropbox, and addspace change functions to insert buttons before the button whose
item number is nnnnn.

For a cdropbox column in a table, nnnnn is the item number associated with the column. If list is
not specified, this causes future insert and minsert change functions to insert lines before

Page 355

the first entry in the cdropbox. If list is specified, this causes future insert and minsert
change functions to insert lines immediately before the entry whose text value matches
list.

change function = "insertbeforennnnn[row]" (insert in a dropbox in a table)
For a dropbox column in a table, nnnnn is the item number associated with the column. row is a

one-based index of the row. If list is not specified, this causes future insert and minsert
change functions to insert lines before the first entry in the dropbox. If list is specified,
this causes future insert and minsert change functions to insert lines immediately before
the entry whose text value matches list.

change function = "insertlineafternnnnn" (specify insert point)
For a listbox, listboxhs, mlistbox, mlistboxhs or dropbox control, future insert and minsert change

functions will insert lines after the line whose number is specified in list.
For a cdropbox column in a table, nnnnn is the item number associated with the column. Future

insert and minsert change functions will insert lines after the line whose line number is
specified in list.

change function = "insertlineafternnnnn[row]" (specify insert point in a dropbox in a table)
For a dropbox column in a table, nnnnn is the item number associated with the column. row is a

one-based index of the row. Future insert and minsert change functions will insert lines
immediately after the line whose line number is specified in list.

change function = "insertlinebeforennnnn" (specify insert point)
For a listbox, listboxhs, mlistbox, mlistboxhs or dropbox controls, Future insert and minsert

change functions will insert lines immediately before the line whose number is specified
in list.

For a cdropbox column in a table, nnnnn is the item number associated with the column. Future
insert and minsert change functions will insert lines immediately before the line whose
number is specified in list.

change function = "insertlinebeforennnnn[row]" (specify insert point in a dropbox in a table)
For a dropbox column in a table, nnnnn is the item number associated with the column. row is a

one-based index of the row. Future insert and minsert change functions will insert lines
immediately before the entry whose text value matches list.

change function = "insertrowbeforennnnn[row]" (insert an empty row in a table)
For a table, insert an empty row before the row indexed by row (one-based) for table with item

number nnnnn.
change function = "itemoff" (no ITEM messages)

This function causes ITEM messages to be suppressed. This is the default state except for
toolbars.

change function = "itemon" (send ITEM messages)
This function causes ITEM messages to be reported. This is the default state for toolbars.

change function = "justifycenternnnnn" (set text justification)
For an edit field, center justify the text string.

change function = "justifyleftnnnnn" (set text justification)
For an edit field, left justify the text string.

change function = "justifyrightnnnnn" (set text justification)
For an edit field, right justify the text string.

change function = "lineoff" (line numbers off)
This function causes all ITEM and PICK messages for listbox, listboxhs, mlistbox, mlistboxhs and

dropbox controls to contain the text value of the lines. For tree controls, this function
causes OPEN, CLOS, and PICK messages to return the text of the item.

change function = "lineon" (line numbers on)
This function causes all ITEM and PICK messages for listbox, listboxhs, mlistbox, mlistboxhs and

dropbox controls to contain line numbers, not text. For tree controls, this function causes

Page 356

OPEN, CLOS, ITEM, and PICK messages to return a comma-delimited list of positions
at each level leading up to the selected item. For listboxes and dropboxes, the query
status function will return the (one-based) line number of the selected item, not the text.
A zero will be returned if there is no selection.

change function = "locatennnnn" (locate item)
For a list box or drop box, list contains the text of the item to be highlighted.
For a cdropbox column in a table, nnnnn is the item number associated with the column. list

contains the text of the line to be highlighted.
change function = "locatecolumn[row]" (locate and highlight a line in a dropbox in a table cell)

For a dropbox column in a table, nnnnn is the item number associated with the column. row is a
one-based index of the row. list contains the text of the line to be highlighted.

change function = "locatelinennnnn" (locate and highlight by line number)
For a list box or drop box, list contains the line number to be highlighted.
For a cdropbox column in a table, nnnnn is the item number associated with the column. list

contains the the line number to be highlighted.
change function = "locatelinecolumn[row]" (locate and highlight a line in a dropbox in a table cell)

For a dropbox column in a table, nnnnn is the item number associated with the column. row is a
one-based index of the row. list contains the line number to be highlighted.

change function = "locatetabnnnnn" (locate and activate tab item)
For a tab item in a tab group, activate the tab item. nnnnn contains the item number of the tab to
be made active.

change function = "marknnnnn" (set status to checked, on or pushed)
For a menu checkitem, make the item checked.
For a check-mark box or radio button, turn the button on.
For a toolbar lock button, lock (or push) the button.

change function = "marknnnnn[row]" (mark a checkbox in a table cell)
For a table, change the selection status of the checkbox in the cell identified by column item

number nnnnn and row number specified row.
change function = "minsertnnnnn" (insert multiple items)

For a listbox, listboxhs, mlistbox, mlistboxhs or dropbox control, list contains a comma delimited
list of text items that will be inserted.

For a cdropbox column in a table, nnnnn is the item number associated with the column. list
contains a comma delimited list of text items that will be inserted.

For all controls, if the text of one of the items in the list contains a comma, it can be embedded
in a line by preceding it with a backslash. Individual lines are limited to 1024 characters.

change function = "minsertnnnnn[row]" (insert multiple lines in a dropbox in a table)
For a dropbox column in a table, nnnnn is the item number associated with the column. row is a

one-based index of the row. list contains a comma delimited list of text items that will be
inserted. If the text of one of the items in the list contains a comma, it can be embedded
in a line by preceding it with a backslash. Individual lines are limited to 1024 characters.

change function = "multiple" (do multiple change functions in a single statement)
Do multiple change functions as specified by the value in list. The syntax of the string value of

list is made up of one or more change-command values. A change-command value is one of
these: { cmd } or { cmd ; list } where cmd is any change function and list is the data
associated with the cmd. When multiple change-command values are specified, there are
no blanks between the braces. The backslash (\) is used before any comma or closing
brace that is part of the data value in list associated with each cmd. The limit of the size
of the list in the change multiple function is 64,000 characters.

change function = "namefilter" (set file name filter)
For an open file or save as file dialog, set the name filters as specified in list. The format of the list

is a string which contains a comma separated set of values taken in pairs. The first of
each pair is the name of the filter, the second is a file name mask.

Page 357

change function = "pastennnnn" (paste text)
For an edit control, if list is specified, it contains the text that replaces the selected text in the edit

control specified by nnnnn. If list is omitted, then the selected text is deleted.
change function = "positionnnnnn" (set position)

For a scroll bar and progressbar, list contains the value of new position of the slider. The position
must be five digits long and must be blank or zero filled on the left.

change function = "pushbuttonnnnnn" (make pushbutton normal)
For a pushbutton, make the pushbutton specified by nnnnn be a normal pushbutton.

change function = "rangennnnn" (set range)
For a scroll bar and progressbar, list contains a string of 15 characters with format lllllhhhhhppppp.

lllll is the new low value of the range. hhhhh is the new high value of the range. ppppp
is the page size of the scroll bar. These values must be five digits long and must be zero
or blank filled on the left.

change function = "readonlynnnnn" (change control to the readonly state)
For any panel or dialog control, change the control to accept focus through mouse click or

keyboard action, but do not allow the value of the control to be altered by the user.
change function = "removecontrolnnnnn" (remove a control from a toolbar)

For a toolbar, remove the control identified by nnnnn.
change function = "removespaceafternnnnn" (remove a space after a control in a toolbar)

For a toolbar, remove the space after the control identified by nnnnn.
change function = "removespacebeforennnnn" (remove a space before a control in a toolbar)

For a toolbar, remove the space before the control identified by nnnnn.
change function = "rightclickoff" (no right button messages)

This function causes right button clicked messages to be suppressed. This is the default state.
change function = "rightclickon" (send right button click messages)

This function causes RBDN, RBUP and RBDC messages to be reported for controls, including
controls in table cells.

change function = "rootlevelnnnnn" (position to root level)
For a tree control, change the current position to the base level.

change function = "selectnnnnn" (select item)
For a multi-line list box, list contains the text of an item to be highlighted.
For a tree control, the line at the current position will be selected.

change function = "selectallnnnnn" (select all items)
For a multi-line list box, all lines are highlighted.

change function = "selectlinennnnn" (select item by line number)
For a multi-line list box, list contains the line number of the line to be highlighted.

change function = "setlinennnnn" (set current line by number)
For a tree control, list contains the line number in the current indent level that will become the

new current line position for the next tree control change function. If the line number is
invalid, an I794 error will occur.

change function = "setselectedline" (set the highlighted line in a tree)
For a tree control, the line that is currently highlighted will become the new current line.

change function = "setmaxcharsnnnnn" (set maximum characters)
For an ledit or mledit control, list contains a 5 digit value that is the new maximum number of

characters that can be entered in the control specified by nnnnn.
change function = "shownnnnn" (show menu entry)

For a menu item, show the menu item.

Page 358

change function = "showonlynnnnn" (inactive control)
For all panel or dialog controls, there is no response to mouse clicks, but the control does receive

keyboard focus. This function is not applicable to trees.
change function = "textnnnnn" (set text)

For a menu item, list contains the new text of the item.
For a pushbutton control, list contains the new text for the button.
For a toolbar button, list contains the new tooltip string.
For an edit field, list contains the new value of the field.
For a vtext control, list contains the new text for the control.
For a checkbox control, list contains the new text for the control.
For a radio button control, list contains the new text for the control.
For a tab in a tabgroup, list contains the new text for the tab.

change function = "textnnnnn[row]" (change the text in a table cell)
For popbox, edit, vtext or rvtext cell in a table, list contains the new text for that control. The item

number of the column is specfied by nnnnn and the row is specified by row.
change function = "textbgcolornnnnn" (set the background color of a popbox)

For a popbox control, change the background color. The value in list must be a valid color.
change function = "textbgcolordatannnnn" (set the background color of a line)

For a listbox, listboxhs, mlistbox, mlistboxhs, dropbox or tree control, change the background
color of an individual line by text. The value in list must be a valid color, followed by a
space, then the text of the line.

change function = "textbgcolorlinennnnn" (set the background color of a line)
For a listbox, listboxhs, mlistbox, mlistboxhs, or dropbox control, change the background color

of an individual line by index. The value in list must be one a valid color, followed by a
space, then the index of the line.

change function = "textcolornnnnn" (set text color)
For a vtext, rvtext, tree, edit type control, or listbox type control not in a table, set the color of the

text in the control specified by nnnnn to the value specified in list.
For a vtext or edit type control in a table, nnnnn is the item number of a column. Set the color of

the column to the value specified in list.
For a table control, if nnnnn is the item number of a table, then set the color of all vtext and edit

type controls in the table to the value specified in list.
The color of a specific vtext or edit type control in a table is ascertained by the priority of the

specification of a cell location, not by the most recent change function to have been
executed. Setting the text color of an entire table is the lowest priority. Setting the color
of a column is the next higher priority. Set the color of a row is the next higher priority.
Setting the color of an individual cell is the highest priority.

For all controls, the value in list must a valid color. If the control is a table or table column, the
color none can also be specified which removes the table or column from the color
decision process.

change function = "textcolornnnnn[row]" (set text color)
For a vtext and edit type control in a table, if nnnnn is the item number of a table, set the color of

a row in the table to the color specified by list. If nnnnn is the item number of a column of
the table, set the color of an individual cell in the table to the color specified by list. The
row index is specified by row. See the previous change function for how the color of a
specific cell is decided. The value in list must be a valid color, or none can also be
specified which removes the row or cell from the color decision process.

change function = "textcolordatannnnn" (set the color of a line)
For a listbox, listboxhs, mlistbox, mlistboxhs, dropbox, or tree control, change the color of an

individual line by text. The value in list must be a valid color, followed by a space, then
the text of the line.

For a tree control, the index is for a line at the current indent level.

Page 359

change function = "textcolorlinennnnn" (set the color of a line)
For a listbox, listboxhs, mlistbox, mlistboxhs, dropbox, or tree control, change the color of an

individual line by index. The value in list must be a valid color, followed by a space, then
the index of the line.

For a tree control, the index is for a line at the current indent level.
change function = "textfontnnnnn" (set text font)

For a vtext, rvtext and cvtext type control not in a table, set the font of the
text in the control specified by nnnnn to the font value specified in list.

change function = "textstyledatannnnn" (change the text and text style of a line)
For a listbox, listboxhs, mlistbox, mlistboxhs, tree or dropbox control, change the style of an

individual line of text. The value in list must be one of: bold, italic, bolditalic, or plain,
followed by a blank, then the text of the line. The current line of a tree is made to be the
selected line.

change function = "textstylelinennnnn" (change the text style of a line)
For a listbox, listboxhs, mlistbox, mlistboxhs, tree or dropbox control, change the style of an

individual line by index. The value in list must be one of: bold, italic, bolditalic, or plain,
followed by a blank, then the index of the line.

change function = "title" (change dialog title)
For a dialog, if list is specified, it contains the new title of the dialog. If list is omitted, then the

title is removed from the dialog. This change function works only on regular dialog
resources, and not for special dialog resources.

change function = "unmarknnnnn" (uncheck, turn off or unpush a control)
For a menu checkitem, make the item not checked.
For a check-mark box or radio button, turn the button off.
For a toolbar lock button, unlock the button.

change function = "unmarknnnnn[row]" (uncheck a cell of a table)
For a checkbox in a table, uncheck a the checkbox identified by column whose item number is

nnnnn and whose row is specified by row.
change function = "uplevelnnnnn" (position up one level)

For a tree control, increase the level one away from the root level. There does not have to be
anything at an indent level for this function to be valid, as long as there exists a line at
one higher level, or the current position is at base level.

Messages

Windows and resources that are linked to queues generate messages as a result of user actions. These
messages are sent to the DB/C program through the queue.

The get statement
The syntax of the get statement is:

get queue; list
Messages sent from a window may be retrieved from a queue by the get statement. The get statement
moves a message from the queue into the list of variables.

Window device message formats
Queue messages from a window contain these five fields:

characters 1 - 8 window name
characters 9 - 12 message function (see be low)
characters 13 - 17 reserved
characters 18 - 22 nnnnn = horizontal position
characters 23 - 27 nnnnn = vertical position
characters 28 - 32 for mouse button click messages this is "CTRL " or "SHIFT" if those

keys are depressed at the time of the click

Page 360

The message function may be one of these:
POSN mouse position reported
LBDN left button was pressed
LBUP left button was released
LBDC left button was double clicked
MBDN middle button was pressed
MBUP middle button was released
MBDC middle button was double clicked
RBDN right button was pressed
RBUP right button was released
RBDC right button was double clicked
CHAR an alphanumeric key has been depressed in window without a panel, character is at

position 18 of message.
CLOS close action from the title bar.
NKEY an extend keyboard key has been depressed in window without a panel, key value

is stored in the horizontal position field.
WACT window notification message that window is becoming the active window
WMIN window notification message that the window is being minimized
WSIZ window has been resized. The new window width is stored in the horizontal

position field and the new window height is stored in the vertical position field.
WPOS window has been moved. The position of the upper left corner with respect to the upper

left corner of the main screen is stored in the horizontal and vertical position fields.
POST mouse has moved past window top
POSB mouse has moved past window bottom
POSL mouse has moved left of left side of window
POSR mouse has moved right of right side of window
HSA- horizontal scroll bar left arrow clicked
HSA+ horizontal scroll bar right arrow clicked
HSP- horizontal scroll bar left page bar clicked
HSP+ horizontal scroll bar right page bar clicked
HSTM horizontal scroll bar track movement message (button down)
HSTF horizontal scroll bar track final message (button up)
VSA- vertical scroll bar up arrow clicked
VSA+ vertical scroll bar down arrow clicked
VSP- vertical scroll bar up page bar clicked
VSP+ vertical scroll bar down page bar clicked
VSTM vertical scroll bar track movement message (button down)
VSTF vertical scroll bar track final message (button up)

Timer device message formats
This queue message is sent by a timer device whenever a timer tick occurs:

characters 1 - 8 timer name
characters 9 - 12 TICK
characters 13 - 17 reserved
characters 18-33 yyyymmddhhmmsspp

Resource message formats
In the following message formats that do not use positions 13-17, those positions will be blank filled.
However, if the receiving field in those byte positions is a numeric variable, it will not be changed.
When a file open dialog, file save as dialog, font name picker dialog, or color picker dialog completes
successfully (OK was pressed), this queue message is sent:

characters 1 - 8 Resource name (blank filled on right)
characters 9 - 10 OK
characters 11 - 12 blank
characters 13 - 17 reserved
characters 18 - end file name, font name, color (rrrrrgggggbbbbb)

Page 361

When an alert dialog completes (OK was pressed), this queue message is sent:
characters 1 - 8 Resource name (blank filled on right)
characters 9 - 10 OK

When a file open dialog, file save as dialog, font name picker dialog, or color picker dialog completes
unsuccessfully (Cancel was pressed), this queue message is sent:

characters 1 - 8 Resource name (blank filled on right)
characters 9 - 12 CANC

When a menu item is selected, the queue message from a menu resource contains these three fields:
characters 1 - 8 Resource name (blank filled on right)
characters 9 - 12 MENU
characters 13 - 17 nnnnn is item number of menu item selected

Control box resources (dialog and panel) send several types of queue messages.
All messages from a control box resource have the same first eight bytes:

characters 1 - 8 Resource name (blank filled on right)
When the close button in the title bar of a dialog is pressed, a close message is sent. The format of this
message is:

characters 1-8 dialog name
characters 9-12 CLOS

A panel or dialog box control receive focus message has this format:
characters 1 - 8 Resource name (blank filled on right)
characters 9 - 12 FOCS
characters 13 - 17 nnnnn

For a table, nnnnn is item number of the column that contains the cell getting focus.
For all other controls: nnnnn is item number of control getting focus

characters 18 - 22 nnnnn
For a table: nnnnn is index (one based) of the row containing the cell getting focus

A panel or dialog box control loss of focus message has this format:
characters 1-8 dialog name
characters 9 - 12 FOCL
characters 13 - 17 nnnnn

For a table: nnnnn is item number of the column that contains the cell losing focus
For all other controls: nnnnn = item number of control losing focus

characters 18 - 22 nnnnn
For a table: nnnnn is index (one based) of the row containing the cell losing focus

A push button, popbox or table columm heading pressed message has this format:
characters 1 - 8 Resource name (blank filled on right)
characters 9 - 12 PUSH
characters 13 - 17 nnnnn

For a popbox cell in a table: nnnnn is item number of the column that contains the control
For all other controls: nnnnn is item number of the pushbutton, popbox or table column

characters 18 - 22 nnnnn
For a popbox cell in a table: nnnnn is index (one based) of the row containing the control

A general item changed message has this format:
characters 1 - 8 Resource name (blank filled on right)
characters 9 - 12 ITEM
characters 13 - 17 nnnnn is item number changed
characters 18 - end text

For lock buttons on a tool bar: Y or N

Page 362

For radio buttons: Y
For check-mark boxes: Y or N
For edit and text fields: text value
For listbox, listboxhs, or dropbox controls: the text value of the selected entry, unless

lineon is in effect, in which case this field is the line number of the selected
entry

For mlistbox or mlistboxhs controls: if lineon is in effect, a comma separated list of
selected items, or if lineoff is in effect, a comma separated list of one-based
line numbers of the selected lines

For tab group tabs: page activated
For tree control: the text value of the selected entry, unless lineon is in effect,

in which case this field is a comma delimited list of positions at each level
leading up to the selected item

A general table cell changed message has this format:
characters 1 - 8 Resource name (blank filled on right)
characters 9 - 12 ITEM
characters 13 - 17 nnnnn is item number of the column
characters 18 - 22 nnnnn is one-based row number
characters 23 - end text

For edit cells: text value
For checkbox cells: Y or N
For dropbox or cdropbox cells: the text value of the selected entry, unless lineon is
in effect, in which case this field will be the five digit line number of the selected entry

NOTE: ITEM messages will not be received unless enabled by the itemon change function.
A listbox, mlistbox, or tree control double clicked message has this format:

characters 1 - 8 Resource name (blank filled on right)
characters 9 - 12 PICK
characters 13 - 17 nnnnn is list box or tree item number
characters 18 - end text field of picked entry

A tree parent item expanded message has this format:
characters 1 - 8 Resource name (blank filled on right)
characters 9 - 12 OPEN
characters 13 - 17 nnnnn is tree control item number
characters 18 - end text label of expanded item

A tree parent item collapsing message has this format:
characters 1 - 8 Resource name (blank filled on right)
characters 9 - 12 CLOS
characters 13 - 17 nnnnn is tree control item number
characters 18 - end text label of collapsed item

A right button message has this format:
characters 1 - 8 Resource name (blank filled on right)
characters 9 - 12 RBxx is right button message where

xx is DN for right button down
xx is UP for right button up
xx is DC for right button double clicked

characters 13 - 17 nnnnn is control item number
characters 18 - 22 nnnnn is horizontal position relative to the window
characters 23 - 27 nnnnn is vertical position relative to the window
characters 28 - 32 CTRL or SHIFT if those keys are depressed at the time of the click

A scroll bar positioning message has this format:

Page 363

characters 1 - 8 Resource name (blank filled on right)
characters 9 - 12 SBxx is scroll bar message where

xx is A- for scroll bar up or left arrow clicked
xx is A+ for scroll bar down or right arrow clicked
xx is P- for scroll bar page up or page left clicked
xx is P+ for scroll bar page down or page right clicked
xx is TM for track movement message (left button pressed)
xx is TF for track final message (left button up)

characters 13 - 17 nnnnn is scroll bar item number
characters 18 - 22 nnnnn is new current position

An edit control text selected message is produced whenever the selected text of a control changes. The
format of this message is:

characters 1 - 8 Resource name (blank filled on right)
characters 9-12 ESEL
characters 13-17 nnnnn is edit control item number
characters 18 - end selected text, if null then no text is selected

When a panel or dialog has keyboard focus, and one of the function keys F1 through F12 is pressed, and
there is no corresponding keyboard accelerator key defined in the current menu, then an NKEY message
is produced. When there is no control with focus, the NKEY message is sent with the window name as
the resource name. The NKEY message is also produced when the Esc key is pressed and there is no
escpushbutton defined in the window. The format of this message is:

characters 1 - 8 Resource name (blank filled on right)
characters 9-12 NKEY
characters 13-17 nnnnn is control item number
characters 18-22 nnnnn is key value (F1 = 301 ... F12 = 312, ESC = 257)

Application Device

The application device provides a method for closing the console window, and a method for changing the
taskbar text and icon of the main DB/C DX runtime window. The application device is accessed by
opening a device variable with the name application. After the application device has been opened, the
change functions can be used on the device.
The syntax of the change statement is:

change device, charexp; list
where the logical string of charexp is the change function.
These change functions are available:
change function = "consolewindow"

The console window will be closed if the value of list is off.
change function = "consolefocus"

The console window will be given focus.
change function = "dialogicon"

When using dbc.exe in Windows, an icon will appear in the upper left corner of dialogs. list
contains the name of a valid 16 by 16 or 32 by 32 icon resource.

change function = "desktopicon"
When using dbc.exe in Windows, an icon will appear in the taskbar for the DB/C DX runtime if
list contains the name of a valid 16 by 16 or 32 by 32 icon resource. If the icon name specified in
list is a 32 by 32 icon, then it will be the large icon seen in the ALT+TAB window for the DB/C
DX runtime.

Page 364

change function = "taskbartext"
When using dbc.exe in Windows, the text for the DB/C DX runtime window in the taskbar will
change to the text specified in list.

Clipboard Device

The clipboard is a device that text and images may be copied to and from. The clipboard may be accessed
by opening a device variable with the name clipboard and using the load and store statements.
Here is an example:
clipbd device
char100 char 100
 open clipbd, "clipboard"
 load char100 from clipbd
 store "new text on clipboard" to clipbd
 close clipbd

The example first retrieves the first 100 characters of the text that is already in the clipboard. The text new
text on clipboard is then moved to the clipboard, destroying the text information previously stored there.
Here is an example that retrieves and displays an image stored on the clipboard:
pic image h=600, v=400
win device
clp device
 prepare win, "window=window01, size=600:400"
 open clp, "clipboard"
 load pic from clp
 close clp
 show pic in win

The query statement may be used to retrieve the size of the image stored in the clipboard.

Fonts

The draw and print statements allow the text font to be set. For draw, the syntax is font=charvar or
font=charlit. For print, the syntax is *font=charvar or *font=charlit. The syntax of the logical string of
charvar or charlit is:

font(attribute, ...)
These five fonts are always available: Courier, Helvetica, Monaco, System, and Times. The fonts Symbol
and Zapfdingbats are available when printing to a PDF document. Other fonts may be available—see the
chapter about your particular operating system for more information. The font names and attributes may
be in upper-case, lower-case, or in mixed upper/lower-case.
These attributes are always available: bold, nobold, italic, noitalic, underline, nounderline, and plain.
plain is equivalent to the nobold, noitalic, nounderline combination. If a number between 1 and 72 is
specified as an attribute, it is the font size (in points).
Only those attributes and font names specified are changed. For example:
 print *font="times(12,plain)", "A"
 print *font="(italic)", "B"
 print *font="courier(14)", "C"

In this example, A will be printed in regular Times 12 point. B will be printed in Times 12 point italic. C
will be printed in Courier 14 point italic.

Page 365

TIFF, GIF, PNG, and JPEG File Support

The load and store statements, in conjunction with device and image variables, allow for access to or
creation of Tagged Image File Format files (TIFF files), access to Graphics Interchange Format files (GIF
files), access to Portable network Graphics files (PNG files), and access to Joint Photographic Experts
Group files (JPEG files). The load statement is used to copy the image from the TIFF, GIF, PNG or JPEG
file to an image variable. The store statement copies an image from an image variable into a TIFF file.
When an open or prep statement is executed on a device variable and the filename extension is .tif, then
the file is assumed to be a TIFF file. When an open statement is executed on a device variable and the
filename extension is .gif, then the file is assumed to be a GIF file. When an open statement is executed on
a device variable and the filename extension is .png, then the file is assumed to be a PNG file. When an
open statement is executed on a device variable and the filename extension is .jpg, then the file is
assumed to be a JPEG file.
The open statement also supports TIFF, GIF, PNG and JPEG files that have extensions other
than .tif, .gif, .png and .jpg. This is done by appeding (tif), (gif), (png) or (jpg) after the file name. For
example "picture.001(tif)" specifies that the file is a TIFF file.
The open statement also supports multi-image TIFF files. The image to load is specified as a numeric
index enclosed by parentheses and following the .tif extension in the filename. For example,
"picture.tif(2)" is the second image in the TIFF file and "picture.001(2,tif)" is also the second image in the
TIFF file.
The query statement can be used to retrieve information about an image device.
The query function "imagesize" is used to obtain the horizontal and vertical size of the image file. The
return value is ten characters in the form hhhhhvvvvv.
The query function "bitsperpixel" retrieves the number of bits contained in each pixel in the image. The
return value is five characters in the form nnnnn.
The query function "imagecount" retrieves the number of images stored in the TIFF file. The return value
is five characters in the form nnnnn.
The query function "resolution" returns a value, in the form hhhhhvvvvv, which represents the horizontal
and vertical image resolution respectively in pixels per inch. If the image file does not contain resolution
information, or the image type is gif, the horizontal and vertical resolution values will be set to zero.
Here is an example:
win device
tiffile device
img image @
hv dim 10
h dim 5
v dim 5
bpp dim 5
 prepare win, "window=w01"
 open tiffile, "picture.tif"
 query tiffile, "imagesize"; hv
 unpack hv to h, v
 query tiffile, "bitsperpixel"; bpp
 makevar ("I" + h + "," + v + "," + bpp) to img
 load img from tiffile
 show img on win

Page 366

Error Codes and Messages

Class Trap Code Meaning

C
C
C
C
C
C
C
C
C

C
C
C
C

C
C
F
R
R
P
P
P
P
P
P
P
P
P
P
P
P
E
E

CFAIL
CFAIL
CFAIL
CFAIL
CFAIL
CFAIL
CFAIL
CFAIL
CFAIL

CFAIL
CFAIL
CFAIL
CFAIL

CFAIL
CFAIL

FORMAT
RANGE
RANGE
SPOOL
SPOOL
SPOOL
SPOOL
SPOOL
SPOOL
SPOOL
SPOOL
SPOOL
SPOOL
SPOOL
SPOOL

101
102
103
104
105
106
107
153
154

155
157
158
159

161
162
201
301
302
401
402
403
404
405
406
407
408
409
410
411
452
501
502

Program module not found during chain, loadmod, ploadmod or make
Invalid program
Program is too large
Common data area does not align
Access violation during chain
Null or invalid file name
Out of memory during chain, loadmod, or make
Attempt to loadmod existing preloaded or chain module
Program module previously loaded with different time stamp during
chain, loadmod, ploadmod or make
Global type does not match previous definition
Class not found in program module during make
Inherited class variable not found during make
Inherited class variable does not match ancestor's definition during
make
Unable to connect to file server
Error communicating with file server
Attempt to read non-numeric data
Attempt to read past file end
Array index reference out of bounds
Unable to create print file or open device
Device or print file name is null or invalid
Print device is off-line or otherwise unavailable
Error during print
Access violation during
Operation attempted on a closed print file
Invalid tab value used with print
Out of memory during print operation
Open mode conflict during splopen
Unable to extend file during print
Invalid option used with splopen
Invalid option used with splopen
Return stack overflow during call or perform
Return stack overflow during call, perform, make, or destroy

Page 367

Class Trap Code Meaning

E
E
E
E

E
E
E
E
E
E

E
E
E
E
E
E
E
E
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO

503
504
505
506

507
551
552
555
556
557

558
559
560
561
562
563
564
566
601
602
603
604
605
606
607
608
609
610
611
612
613
614
651
653

Return stack empty
Another filepi is already active
Execution error (invalid instruction or control code)
Invalid data used with scrnrestore, staterestore, winrestore or
traprestore
Array index reference out of bounds
External label or method not found
Address variable contains invalid address
getparm or loadparm with invalid data pointer
Out of memory during makevar
Attempt to modify a literal value, non-numeric variable, or
non-character variable
return or trap attempted to an unloaded module
Exceeded 10 nested lists or array variables
Invalid use of a label variable
Conflict with internal pfile name
Class make routine or destroy routine not found
Call to method with uninstantiated object
Attempt to use an image variable in a non-GUI runtime
A truncation occurred during evaluation of a character expression
File not found during open, rename or erase
Open mode conflicts with another program
Null or invalid file name used with open, prepare, rename or erase
Invalid file type used with open, prepare, rename or erase
Attempt to prepare or rename a file that already exists
Key length specified in open differs from index file
Access violation during open, prepare, rename or erase
Associative key specification in prepare missing or invalid
Index key specification invalid in prepare
Invalid record length specified in open or prepare
Attempt to rename a file to a different resource
Error during close
Unable to create file during prepare
Out of memory during open, prepare, rename or erase
Native file open error
Unable to find dynamic link library

Page 368

Class Trap Code Meaning

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

IO
IO
IO

IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO

654
655
656

657
658
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
751
752
753
754
755
761
762
763
764

Dynamic link library incompatible or invalid
Error loading user routine from dynamic link library
Error when an ifile open is attempted for a file that allows duplicate
keys and the ifile statement contains the nodup keyword
Unable to connect to file server
Error communicating with file server
File not open - operation attempted on closed file
Attempt to write to read-only file
Attempt to randomly access a variable length record file
Invalid tab value used with read, updatab or writab
Attempt to access a file that is off-line or otherwise not available
Error during write
Access violation during read, write or writab
Attempt to write or insert with null index key
Attempt to write or insert a duplicate key
Attempt to update to invalid file position
Attempt to update a compressed file
Associative read key specification error
Associative read insufficient key(s) specified
Invalid associative index position for readkg or readkgp
Attempt to read a record that is too small
Attempt to read, write or update a record that is too large
Invalid data file position for insert or delete
Attempt to perform an indexed read with null key and invalid position
Attempt to insert two identical keys for the same record
Attempt to read a record that does not exist or was deleted
Specified key too long in read, write, insert, delete or deletek
comfile not open
SQL error
Communications error
Communications not available
Invalid queue handle
Error creating device—invalid device name
Error opening device—invalid device name
Error creating resource—invalid resource type
Error opening resource—invalid resource type

Page 369

Class Trap Code Meaning

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
E
C
C
C
C
C
C
C
C
C
P
P

IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO

IO
IO
IO
IO
IO
IO
IO
IO

CFAIL
CFAIL
CFAIL
CFAIL
CFAIL
CFAIL
CFAIL
CFAIL
CFAIL
SPOOL
SPOOL

765
766
767
768
771
772
773
774
775
776
777
778
779

780
781
791
792
793
794
798
799
1155
1167
1168
1180
1181
1182
1184
1185
1186
1199
1451
1455

Error creating device—system error
Error opening device—system error
Error creating resource—system error
Error opening resource—system error
Error creating device or resource—syntax error
Error creating device or resource—expecting comma
Error creating device or resource—expecting equal sign
Error creating device or resource—expecting colon
Error creating device or resource—expecting value
Error creating device or resource—expecting numeric value
Error creating device or resource—invalid use of forcing character
Error creating device or resource—invalid font name
Error when an icon resource name that is specified in a prepare
statement of a resource does not exist
Unable to connect to file server
Error communicating with file server
Device or resource not open
Invalid device or resource type
Error during query—invalid query function or value
Error during change—invalid change function or value
Error communicating with Smart Client
Unspecified error
Exceed maximum files open
Unable to allocate memory
Unable to read
Unable to seek
Bad library
Invalid value for file handle
Unable to open
Invalid argument
No semaphores
Unspecified error
File not open
Exceed maximum files open

Page 370

Class Trap Code Meaning

P
P
P
P
P
P
P
P
P
P
P
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPOOL
SPOOL
SPOOL
SPOOL
SPOOL
SPOOL
SPOOL
SPOOL
SPOOL
SPOOL
SPOOL

IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO

1457
1467
1468
1469
1480
1482
1484
1486
1487
1498
1499
1655
1663
1664
1665
1667
1668
1669
1670
1671
1678
1680
1681
1682
1684
1686
1688
1689
1698
1699
1751
1752
1753
1755

Invalid file type
Unable to allocate memory
Unable to read
Unable to write
Unable to seek
Invalid value for file handle
Unable to open
No semaphores
Error opening or reading print map
Exceeded user license
Unspecified error
Exceed maximum files open
Invalid index file
Wrong key length
Wrong record length
Unable to allocate memory
Unable to read
Unable to write
Unable to delete
Unable to lock file
Unable to rename
Unable to seek
Bad library
Invalid value for file handle
Unable to open
No semaphores
Error opening or reading collate file
Error opening or reading casemap file
Internal programming error
Unspecified error
File not open
File not available
Access denied
Exceed maximum files open

Page 371

Class Trap Code Meaning

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO
IO

1757
1758
1759
1760
1761
1762
1763
1766
1767
1768
1769
1771
1780
1781
1782
1783
1784
1786
1787
1798
1799

File type does not support corresponding IO operation
No end-of-record mark or record too long
Record too short
Invalid character encountered
Beyond end-of-file
Record has already been deleted
Index file is invalid
Invalid key
Unable to allocate memory
Unable to read
Unable to write
Unable to lock file or record
Unable to seek
Bad library
Invalid value for file handle
Attempt write on read-only file
Unable to open
No semaphores
No EOF
Internal programming error
Unspecified error

Page 372

	DB/C Language Fundamental Concepts
	Using Advanced DB/C Language Features
	Writing GUI Programs
	Compiling and Running Programs
	Runtime Properties
	SQL
	Communications
	Writing Portable Programs
	Windows Considerations
	Linux Considerations
	C Interface
	File Formats
	DB/C Programming Language General Information
	Compiler Directives
	Conditional Compiler Directives
	define
	equate
	include
	liston, listoff

	Definition Statements
	Character Variables
	Numeric Variables
	List Variables
	Record Variables
	File Variables
	Classes, Object and Inherited Variables
	Special Variables
	Address Variables
	Global Variables
	Common Variables
	Label Variables
	verb, cverb

	Executable Statements
	add
	and
	append
	beep
	branch
	bump
	call
	ccall
	chain
	change
	charrestore
	charsave
	check10
	check11
	chop
	clear
	clearadr
	clearendkey
	clearlabel
	clock
	close, closeall
	cmatch
	cmove
	comclr
	comctl
	comopen, comclose
	compare
	compareadr
	comtst
	comwait
	console
	count
	debug
	delete
	deletek
	destroy
	disable
	display
	divide
	draw
	edit
	empty
	enable
	endset
	erase
	execute
	extend
	external
	File Manipulation Statements
	filepi
	fill
	flagrestore
	flagsave
	flusheof
	for, break, continue, repeat
	format
	fposit
	get
	getcolor
	getcursor
	getendkey
	getglobal
	getlabel
	getmodules
	getname
	getobject
	getpaperbins
	getpapernames
	getparm
	getposition
	getprinters
	getwindow
	goto
	hide
	if, else, endif
	insert
	keyin
	lcmove
	lenset
	link
	load
	loadadr
	loadlabel
	loadmod
	loadparm
	loop, break, while, until, continue, repeat
	make
	makeglobal
	makevar
	match
	Miscellaneous Arithmetic Statements
	mod
	move
	moveadr
	movefptr
	movelabel
	movelength
	movelptr
	movelv
	movesize
	movevl
	multiply
	nformat
	noeject
	noreturn
	not
	open
	or
	pack
	packlen
	pause
	perform
	ploadmod
	popreturn
	prepare
	print
	pushreturn
	put
	putfirst
	query
	read
	readgplk
	readkg
	readkglk
	readkgp
	readkp
	readkplk
	readks
	readkslk
	readlk
	recv
	recvclr
	release
	rename
	replace
	reposit
	reset
	resetparm
	retcount
	return
	rollout, clientrollout
	rotate
	routine, lroutine, endroutine
	scan
	scrnrestore
	scrnsave
	scrnsize
	search
	send
	sendclr
	set
	setendkey
	setflag
	setlptr
	setnull
	sformat
	show
	shutdown
	sound
	splclose
	splopen
	splopt
	sqlcode
	sqlexec
	sqlmsg
	squeeze
	staterestore
	statesave
	statesize
	stop
	store
	storeadr
	storelabel
	subtract
	switch, case, default, endswitch
	tabpage
	test
	testadr
	testlabel
	trap
	trapclr
	traprestore
	trapsave
	trapsize
	trim
	type
	unlink
	unload
	unlock
	unpack
	unpacklist
	updatab
	update
	wait
	weof
	winrestore
	winsave
	winsize
	write
	xor

	GUI Programming Reference
	Creation of Windows and Timers
	Operation of Windows and Timers
	Creation of Resources
	Operation of Resources
	Messages
	Application Device
	Clipboard Device
	Fonts
	TIFF, GIF, PNG, and JPEG File Support

	Error Codes and Messages

